Ôn tập chương Số thực. Số hữu tỉ

Akai Haruma
1 tháng 3 lúc 1:17

Lời giải:

Giá trị trung bình là:\(\overline{X}=\frac{105.3+\frac{110+120}{2}.7+\frac{121+131}{2}.5+\frac{132+142}{2}.6+\frac{143+153}{2}.7+155.2}{30}\)

\(=\frac{3918}{30}=130,6\)

Bình luận (0)
Akai Haruma
22 tháng 2 lúc 17:59

Lời giải:

Gọi đa thức là $T$

\(T=(\frac{-2007}{3})^8(xy)^8.(\frac{-6}{2007})^8(x^2y)^8\)

\(=\frac{2007^8}{3^8}.x^8y^8.\frac{6^8}{2007^8}.x^{16}.y^8\)

\(=\frac{6^8}{3^8}.x^{8+16}.y^{8+8}=2^8.x^{24}y^{16}\)

Bình luận (0)

Ta có: \(\left(-\dfrac{2007}{3}xy\right)^8\cdot\left(-\dfrac{6}{2007}x^2y\right)^8\)

\(=\left(\dfrac{2007}{3}\cdot\dfrac{6}{2007}\right)^8\cdot x^8\cdot x^{16}\cdot y^8\cdot y^8\)

\(=256x^{24}y^{16}\)

Bình luận (0)
Nguyễn Việt Lâm
21 tháng 2 lúc 22:31

Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)

Vậy:

\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)

\(=\dfrac{100.101}{2}-1=5049\)

Bình luận (0)
👁💧👄💧👁
20 tháng 2 lúc 20:56

\(\dfrac{x-y}{x+y}=\dfrac{z-x}{z+x}\\ \Rightarrow\left(x-y\right)\left(z+x\right)=\left(x+y\right)\left(z-x\right)\\ \Rightarrow xz+x^2-yz-yx=xz-x^2+yz-yx\\ \Rightarrow xz-xz+x^2+x^2=yz+yz-yx+yx\\ \Rightarrow2x^2=2yz\\ \Rightarrow x^2=yz\)

Bình luận (0)
Nguyễn Phương Thúy
20 tháng 2 lúc 20:35

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Bình luận (2)

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

Bình luận (1)
👁💧👄💧👁
20 tháng 2 lúc 20:36

\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)

Bình luận (0)

a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)

\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)

\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)

\(=-\dfrac{891}{100}\)

b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)

\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)

\(=\dfrac{58}{8}+\dfrac{100}{8}\)

\(=\dfrac{158}{8}=\dfrac{79}{4}\)

c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)

\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)

\(=\dfrac{20}{3}-\dfrac{7}{3}\)

\(=\dfrac{13}{3}\)

d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)

\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)

\(=4-1-\dfrac{2}{5}\)

\(=3-\dfrac{2}{5}\)

\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)

e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)

\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}+\dfrac{28}{15}\)

\(=\dfrac{-25}{60}+\dfrac{112}{60}\)

\(=\dfrac{87}{60}=\dfrac{29}{20}\)

f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)

\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{8}\)

\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)

g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)

\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)

\(=\left(\dfrac{1}{2}\right)^{55}\)

\(=\dfrac{1}{2^{55}}\)

h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)

\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)

\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)

\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)

\(=\dfrac{1}{800000}\)

Bình luận (0)

ĐKXĐ: \(n\ne-\dfrac{1}{2}\)

Để A nguyên thì \(3n+2⋮2n+1\)

\(\Leftrightarrow2\left(3n+2\right)⋮2n+1\)

\(\Leftrightarrow6n+4⋮2n+1\)

\(\Leftrightarrow6n+3+1⋮2n+1\)

mà \(6n+3⋮2n+1\)

nên \(1⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(1\right)\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)(thỏa mãn)

Vậy: Để A nguyên thì \(n\in\left\{0;-1\right\}\)

Bình luận (1)

Ta có: \(5^x+25\cdot5^{x+1}-125\cdot5^{x+2}=-74975\)

\(\Leftrightarrow5^x+25\cdot5^x\cdot5-125\cdot25\cdot5^x=-74975\)

\(\Leftrightarrow5^x\cdot\left(1+125-3125\right)=-74975\)

\(\Leftrightarrow5^x=25\)

hay x=2

Vậy: x=2

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN