Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Lê Thị Thục Hiền
4 tháng 6 lúc 22:51

\(\dfrac{1}{c}+b^2c=ab\left(a+b+c\right)+b^2c=ab\left(a+c\right)+b^2\left(a+c\right)=b\left(a+b\right)\left(a+c\right)\)

\(\dfrac{1}{c}+a^2c=ab\left(a+b+c\right)+a^2c=a\left(a+b\right)\left(b+c\right)\)

\(\Rightarrow\left(\dfrac{1}{c}+b^2c\right)\left(\dfrac{1}{c}+a^2c\right)=ab\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)

\(\Leftrightarrow\left(1+b^2c^2\right)\left(1+a^2c^2\right)=c^2\left(a+b\right)^2ab\left(ab+bc+ac+c^2\right)\)\(=c^2\left(a+b\right)^2\left(a^2b^2+ab^2c+a^2bc+abc^2\right)\)\(=c^2\left(a+b\right)^2\left[a^2b^2+abc\left(a+b+c\right)\right]=c^2\left(a+b\right)^2\left(a^2b^2+1\right)\)

\(\Rightarrow\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2\left(a^2b^2+1\right)}=\left(a+b\right)^2\)

\(\Leftrightarrow\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\) (đpcm)

Bình luận (0)
Lê Thị Thục Hiền
4 tháng 6 lúc 22:24

Có \(A>\sqrt{6}\)

Có \(\sqrt{6}< \sqrt{9}=3\) \(\Rightarrow\sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)\(\Rightarrow A=\sqrt{6+\sqrt{6+...+\sqrt{6}}}< 3\)

\(\Rightarrow\sqrt{6}< A< 3\)

\(\Rightarrow A\notin N\)

Bình luận (0)
Lê Thị Thục Hiền
3 tháng 6 lúc 16:17

\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)

\(G\in Z\Leftrightarrow\dfrac{7}{\sqrt{x}-3}\in Z\)

Tại \(x\in N\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in N\\\sqrt{x}\in I\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\in I\end{matrix}\right.\)

TH1: \(\sqrt{x}-3\in I\) \(\Rightarrow\dfrac{7}{\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk

\(TH2:\sqrt{x}-3\in Z\).Để \(\dfrac{7}{\sqrt{x}-3}\in Z\) \(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{4;16;100\right\}\)

Tại x=4 =>G=-5

Tại x=16=>G=9

Tại x=100=>G=3

Vậy tại x=6 thì \(G_{max}\)=9

(I là số vô tỉ)

Bình luận (0)
Anthy
3 tháng 6 lúc 16:19

\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)

Để \(G\in Z\Rightarrow7⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)

mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1\right\}\)

Để \(G_{max}\Rightarrow\dfrac{7}{\sqrt{x}-3}_{max}\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-3_{min}\end{matrix}\right.\Rightarrow\sqrt{x}-3=1\Rightarrow x=4\)

\(\Rightarrow G_{max}=5\)

 

Bình luận (1)
Yeutoanhoc
3 tháng 6 lúc 11:02

`T=sqrt{8-2sqrt{15}}/(sqrt{10}-sqrt6)`

`=sqrt{5-2sqrt{5,3}+3}/(sqrt2(sqrt5-sqrt3))`

`=sqrt{(sqrt5-sqrt3)^2}/(sqrt2(sqrt5-sqrt3))`

`=(sqrt5-sqrt3)/(sqrt2(sqrt5-sqrt3))`

`=1/sqrt2`

`=sqrt2/2`

Bình luận (0)
Anthy
3 tháng 6 lúc 11:08

\(T=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{10}-\sqrt{6}}=\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{1}{\sqrt{2}}\)

Bình luận (0)
Lê Thị Thục Hiền
3 tháng 6 lúc 9:14

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)

\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)

\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)

Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)

\(\Leftrightarrow x+y=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

Bình luận (0)
Yeutoanhoc
3 tháng 6 lúc 9:14

Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`

`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`

`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`

CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`

Cộng từng vế (1)(2) ta có:

`2(x+y-1)=0`

`<=>x+y-1=0`

`<=>x+y=1`

`<=>(x+y)^3=1`

`<=>x^3+y^3+3xy(x+y)=1`

`<=>x^3+y^3+3xy=1`(do `x+y=1`)

Bình luận (0)
Yeutoanhoc
2 tháng 6 lúc 14:41

`3/(x^2-3x+3)+x^2-3x-3=0`

`<=>3+(x^2-3x-3)(x^2-3x+3)=0`

`<=>3+(x^2-3x)^2-9=0`

`<=>(x^2-3x)^2-6=0`

`<=>x^2-3x=+-6`

Đến đây chia 2 th rồi giải thôi :v

Bình luận (1)
Lê Thị Thục Hiền
31 tháng 5 lúc 20:28

Đk: \(x\ge4\)

\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)

\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)

\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)

Vậy...

Bình luận (0)
trần đưc thái
31 tháng 5 lúc 20:19

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN