Bài 5: Lũy thừa của một số hữu tỉ

Mezadon
Hôm qua lúc 20:56

1.Bậc 5

2.Bậc 5

Tin hay không tuỳ

Bình luận (0)
Bảo Trâm
Hôm qua lúc 20:58

1. đơn thức nên bậc 5

2. đa thức nên bậc 5

Bình luận (0)

Đặt \(13p+1=n^3\left(n\in N\right)\)

\(\Leftrightarrow13p=n^3-1\)

\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)

Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)

\(\Leftrightarrow n=14\)

hay \(p=14^2+14+1=196+14+1=211\)(nhận)

Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)

\(\Leftrightarrow n^2+2=13-p\)

\(\Leftrightarrow\left(p+1\right)^2=11-p\)

\(\Leftrightarrow p=2\)(nhận)

Vậy: \(p\in\left\{2;211\right\}\)

Bình luận (0)
Akai Haruma
15 tháng 2 lúc 23:41

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

Bình luận (0)

Ta có: \(3^{-1}\cdot3^n+6\cdot3^{n-1}=7\cdot3^6\)

\(\Leftrightarrow3^{n-1}+6\cdot3^{n-1}=7\cdot3^6\)

\(\Leftrightarrow3^{n-1}\cdot\left(1+6\right)=7\cdot3^6\)

\(\Leftrightarrow3^{n-1}\cdot7=3^6\cdot7\)

\(\Leftrightarrow3^{n-1}=3^6\)

\(\Leftrightarrow n-1=6\)

hay n=7

Vậy: n=7

Bình luận (0)
Nguyễn Ngọc Lộc
8 tháng 2 lúc 13:29

Ta có : \(\left\{{}\begin{matrix}2^{24}=\left(2^3\right)^8=8^8\\3^{16}=\left(3^2\right)^8=9^8\end{matrix}\right.\)

Thấy : \(9>8\)

\(\Leftrightarrow9^8>8^8\)

\(\Leftrightarrow3^{16}>2^{24}\)

Vậy ...

Bình luận (0)
^JKIES Nguyễn^
8 tháng 2 lúc 13:29

ta có

\(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

mà  8 < 9 nên 8^8<9^8 hay \(2^{24}\)\(3^{16}\)

vậy ...

Bình luận (1)

Ta có:

A= 52014-52013+52012⋮105

A= 5^2011(5^3- 5^2)+5

A=5^2011(125- 25)+5

A= 5^2011. 105

=> A:105​(đpcm)

Bình luận (0)

5^2014-5^2013+5^2012

=5^2012(5^2-5^1+1)

 =5^2012.21 =5^2011.5.21

=5^2011.105

Vậy 5^2014-5^2013+5^2012 chia hết cho 105

chúc bạn học tốt

Bình luận (0)

Ta có: \(5^{2014}-5^{2013}+5^{2012}\)

\(=5^{2012}\cdot\left(5^2-5+1\right)\)

\(=5^{2011}\cdot5\cdot21\)

\(=5^{2011}\cdot105⋮105\)(đpcm)

Bình luận (0)

Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+0.4\right)^{100}\ge0\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)

Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)

Bình luận (0)
Thu Thao
12 tháng 1 lúc 21:50

\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)

=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)

Bình luận (0)
Trần Ái Linh
12 tháng 1 lúc 21:50

\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)

Vậy...

Bình luận (0)

Ta có: x:3=y:5

nên \(\dfrac{x}{3}=\dfrac{y}{5}\)

mà y-x=24

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{3}=12\\\dfrac{y}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)

Vậy: (x,y)=(36;60)

Bình luận (0)

Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)

\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)

\(=11\cdot25^n+6\cdot8^n\)

Vì \(25\equiv8\)(mod 17)

nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)

hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)

Bình luận (0)
Trương Lệ Hằng
8 tháng 1 lúc 8:20

ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1

*\(\dfrac{a}{b}\)=1 =>a=b

*\(\dfrac{b}{c}\)=1 =>b=c

*\(\dfrac{c}{a}\)=1 =>c=a

=>a=b=c

=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1

nhớ like nha banh

Bình luận (1)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN