Bài 2: Liên hệ giữa thứ tự và phép nhân

Akai Haruma
16 tháng 4 lúc 22:45

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Bình luận (0)
Akai Haruma
16 tháng 4 lúc 22:49

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

Bình luận (0)
Akai Haruma
16 tháng 4 lúc 21:03

Lời giải: 

Áp dụng BĐT Bunhiacopxky:

$[(x+\frac{1}{x})^2+(y+\frac{1}{y})^2](1+1)\geq (x+\frac{1}{x}+y+\frac{1}{y})^2$

$\Leftrightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(x+y+\frac{1}{x}+\frac{1}{y})^2=\frac{1}{2}(1+\frac{1}{xy})^2$

Mà: 
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$ theo BĐT Cô-si

$\Rightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(1+\frac{1}{\frac{1}{4}})^2=\frac{25}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$ 

Bình luận (0)
Akai Haruma
16 tháng 4 lúc 21:07

** Lần sau bạn lưu ý ghi đề bài đầy đủ.

Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$

----------------------------

Ta có:

BĐT cần cm tương đương với:

$x^2+y^2+z^2-xy-yz-xz\geq 0$

$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$

(luôn đúng với mọi số thực $x,y,z$)

Do đó ta có đpcm

Dấu "=" xảy ra khi $x=y=z$

Bình luận (1)

a) Ta có: -7x+13>-7y+13

\(\Leftrightarrow-7x>-7y\)

hay x<y

 

Bình luận (0)

b) Ta có: 11x-1>11y+1

mà 11x+1>11x-1

nên 11x+1>11y+1

\(\Leftrightarrow11x>11y\)

hay x>y

Bình luận (0)

c) Ta có: -19x-37<-19y-37

\(\Leftrightarrow-19x< -19y\)

hay x>y

Bình luận (0)
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 22:18

Đặt \(\frac{x}{y}+\frac{y}{x}=a\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=a^2-2\)

Ta cũng có: \(a=\frac{x^2+y^2}{xy}=\frac{\left(x-y\right)^2}{xy}+2\ge2\)

Vậy \(B=2\left(a^2-2\right)-a+1\) với \(a\ge2\)

\(B=2a^2-a-3=2a^2-a-6+3\)

\(B=\left(a-2\right)\left(2a+3\right)+3\)

Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-2\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-2\right)\left(2a+3\right)\ge0\)

\(\Rightarrow B\ge3\Rightarrow B_{min}=3\) khi \(a=2\) hay \(x=y\)

Bình luận (0)
Nguyễn Việt Lâm
16 tháng 7 2020 lúc 22:33

Gọi 3 số đó là a;b;c. Do vai trò của a;b;c là như nhau, không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Từ giả thiết ta có: \(\left\{{}\begin{matrix}abc=1\\a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\end{matrix}\right.\) \(\Rightarrow\) a;b;c không thể đồng thời bằng 1 (vi phạm giả thiết thứ 2)

Nếu a;b;c đều nhỏ hơn 1 \(\Rightarrow abc< 1\) (trái giả thiết)

Nếu a;b;c đều lớn hơn 1 \(\Rightarrow abc>1\) (trái giả thiết)

\(\Rightarrow\) Chỉ có 1 hoặc 2 số trong 3 số lớn hơn 1

Giả sử có 2 số lớn hơn 1 \(\Rightarrow a;b>1\)

Từ giả thiết thứ 2: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+\frac{1}{ab}>\frac{1}{a}+\frac{1}{b}+ab\)

\(\Leftrightarrow a+b+\frac{1}{ab}>\frac{a+b}{ab}+ab\)

\(\Leftrightarrow a+b-\frac{a+b}{ab}+\frac{1}{ab}-ab>0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab-1}{ab}\right)-\frac{\left(ab-1\right)\left(ab+1\right)}{ab}>0\)

\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-\frac{ab+1}{ab}\right)>0\)

\(\Leftrightarrow a+b-ab-1>0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)>0\) (vô lý do \(\left\{{}\begin{matrix}a>1\\b>1\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(1-b\right)< 0\))

Vậy điều giả sử là sai

Hay trong 3 số có đúng 1 số lớn hơn 1

Bình luận (0)
Vũ Huy Hoàng
22 tháng 6 2020 lúc 16:15

Ta có:\(a\le b\Rightarrow\frac{-2}{3}a\ge\frac{-2}{3}b\) (vì cùng nhân với 1 số âm)

\(\Rightarrow\frac{-2}{3}a-4\ge\frac{-2}{3}b-4\)

(Theo mình đề bài sửa thành lớn hơn hoặc bằng nha)

Bình luận (0)
Nguyễn Lê Phước Thịnh
4 tháng 6 2020 lúc 22:59

Dễ mà bạn

Ta có: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\forall a,b\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN