Chương 1: KHỐI ĐA DIỆN

Linh Linh
Xem chi tiết
Linh Linh
Xem chi tiết
Tuấn Đông
Xem chi tiết
Nguyễn Thanh Hậu
15 tháng 3 2019 lúc 20:44

to

Bình luận (0)
phuonganh nguyenthai
Xem chi tiết
Akai Haruma
26 tháng 8 2017 lúc 15:20

Lời giải:
a)

Kẻ \(AH\perp CD\). Do tam giác $ACD$ cân tại $A$ nên $H$ là trung điểm của $CD$.

Tam giác $BCD$ có $BC=BD$ nên là tam giác cân, do đó \(BH\perp CD\)

Xét thấy \(\left\{\begin{matrix} AH\perp CD\\ BH\perp CD\end{matrix}\right.\Rightarrow (AHB)\perp CD\Rightarrow AB\perp CD\)

b)

\(\left\{\begin{matrix} AH\perp CD\\ AH\perp BH\end{matrix}\right.\Rightarrow AH\perp (BCD)\) hay $AH$ là đường cao hạ từ $A$ của tứ diện $ABCD$

Tam giác \(ACD\)\(AC^2+AD^2=CD^2\Rightarrow \triangle ACD\) vuông tại $A$

\(\Rightarrow AH=CH=HD=\frac{CD}{2}=a\)

Ta cũng chứng minh được tam giác $BCD$ vuông tại $B$

Do đó, \(V_{ABCD}=\frac{1}{3}.AH.S_{BCD}=\frac{1}{3}.a.\frac{\sqrt{2}a.\sqrt{2}a}{2}=\frac{a^3}{3}\)

Bình luận (0)
Út My
Xem chi tiết
Akai Haruma
26 tháng 8 2017 lúc 16:38

Lời giải:

Vì $ABCD$ là tứ diện đều nên khoảng cách từ trọng tậm $O$ đến các mặt bên là như nhau:

Lấy $H$ là trung điểm của $BC$, Vì tam giác $BCD$ đều nên

\(DH\perp BC\Rightarrow DH=\sqrt{BD^2-BH^2}=\sqrt{a^2-\frac{a^2}{4}}=\frac{\sqrt{3}}{2}a\)

\(\Rightarrow HO=\frac{1}{3}DH=\frac{\sqrt{3}}{6}a\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\frac{a^2}{4}}=\frac{\sqrt{3}a}{2}\)

Do đó, \(AO=\sqrt{AH^2-HO^2}=\frac{\sqrt{6}a}{3}\)

\(\Rightarrow d(I,(BCD))=IO=\frac{AO}{2}=\frac{\sqrt{6}a}{6}\)

Kẻ \(OT\perp AH\Rightarrow d(O,(ABC))=OT=\sqrt{\frac{AO^2.HO^2}{AO^2+HO^2}}=\frac{\sqrt{6}a}{9}\)

\(\frac{d(I,(ABC))}{d(O,(ABC))}=\frac{AI}{IO}=\frac{1}{2}\Rightarrow d(I,(ABC))=\frac{\sqrt{6}a}{18}\)

Hay \(d(I,(ABC))=d(I,(ABD))=d(I,(ACD))=\frac{\sqrt{6}a}{18}\)

Bình luận (0)
Tuấn Đông
Xem chi tiết
Akai Haruma
25 tháng 8 2017 lúc 10:03

Bài 18:

Theo định lý Pitago:

\(SA=\sqrt{SB^2-AB^2}=2a\)

Do đó, \(V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.2a.\frac{a.5a}{2}=\frac{5a^3}{3}\)

Đáp án D.

Bài 19:

\(SA\perp (ABCD)\Rightarrow \angle (SB,(ABCD))=\angle (SB,AB)=\angle SBA=60^0\)

Suy ra \(\frac{SA}{AB}=\frac{SA}{a}=\tan SBA=\sqrt{3}\Rightarrow SA=\sqrt{3}a\)

\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}\sqrt{3}a.a.3a=\sqrt{3}a^3\)

Đáp án B

Bình luận (0)
Phạm Yến Linh Linh
Xem chi tiết
Akai Haruma
15 tháng 8 2017 lúc 0:33

Lời giải:

Tính toán đơn giản: \(AC=\sqrt{3}a, DB=a\)

Ý 1:

Do \(SA\perp (ABCD)\Rightarrow SA\perp AC\). Áp dụng định lý Pitago:

\( \frac{1}{d(A,SC)^2}=\frac{1}{SA^2}+\frac{1}{AC^2}\Leftrightarrow \frac{1}{a^2}=\frac{1}{SA^2}+\frac{1}{3a^2}\Rightarrow SA=\frac{\sqrt{6}}{2}a\)

\(\Rightarrow V_{\text{chóp}}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{6}a}{2}.\frac{AC.BD}{2}=\frac{\sqrt{2}a^3}{4}\)

Ý 2:

Kẻ \(AH\perp BC\) với \(H\in BC\). Có \(\left\{\begin{matrix} AH\perp BC\\ SA\perp BC\end{matrix}\right.\Rightarrow BC\perp (SAH)\)

Kẻ \(AT\perp SH\), mà \(AT\perp BC\) do \(AT\in (SAH)\) , do đó \(AT\perp (SBC)\)

\(\Rightarrow AT=d(A,(SBC))=\sqrt{\frac{SA^2.AH^2}{SA^2+AH^2}}\)

\(AH=\sin 60.AB=\frac{\sqrt{3}a}{2}\), suy ra \(d(A,(SBC))=AT=\frac{\sqrt{2}a}{2}\)

Ý 3:

Kẻ \(BK\parallel AC\) cắt $AD$ tại $K$

Ta có: \(d(SB,AC)=d(AC,(SBK))=d(A,(SBK))\)

Kẻ \(AR\perp BK\).

\(AR=AB.\sin ABK=AB.\sin BAC=AB\sin 30=\frac{a}{2}\)

Kẻ \(AM\perp SR\) thì $AM$ chính là khoảng cách từ $A$ đến $(SBK)$

\(d(A,(SBK))=AM=\sqrt{\frac{SA^2.AR^2}{SA^2+AR^2}}=\frac{\sqrt{42}a}{14}\)

Bình luận (0)
Mai Lê
Xem chi tiết
linh
Xem chi tiết
Trúc Lâm
Xem chi tiết