Cho tam giác ABC vuông tại A, Mlaf trung điểm của BC. Chứng minh rằng AM = \(\frac{BC}{2}\)
Trên tia đối của MA vẽ MD sao cho MA = MD (như hình vẽ)
Xét Δ BMD và Δ CMA có:
BM = CM (gt)
BMD = CMA (đối đỉnh)
MD = AM (cmt)
Do đó, Δ BMD = Δ CMA (c.g.c)
=> BD = AC (2 cạnh tương ứng), BDM = CAM (2 góc tương ứng)
Mà BDM và CAM là 2 góc so le trong => BD // AC
Mà \(AB\perp AC\) nên \(AB\perp BD\)
Xét Δ ABD vuông tại B và Δ BAC vuông tại A có:
BD = AC (cmt)
AB là cạnh chung
Do đó, Δ ABD = Δ BAC (2 cạnh góc vuông)
=> AD = BC (2 cạnh tương ứng)
Mà \(AM=\frac{1}{2}AD\) do AM = MD
=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)
Lên lớp 8 cái này chẳng cần chứng minh nữa :)))
Nghĩ sao câu nay được vào câu hỏi hay vậy thầy
d) ĐK: D thuộc BM
t/g AHM = t/g CIM (c.g.c)
=> HM = IM (2 cạnh t/ứ) (1)
và AMH = CMI (2 góc t/ứ)
=> AMI + IMH = AMI + AMC = AMI + 90o
=> IMH = 90o (2)
Từ (1) và (2) => t/g HIM vuông cân tại M
=> HIM = 45o
Mà HIM + MIC = HIC = 90o
=> 45o + MIC = 90o
=> MIC = 45o = HIM
=> IM là p/g HIC (đpcm)
Ta dễ dàng tính được Tam giác DMN cân tại M
=>DM=MN (dựa vào số đo của các góc và 1 số c/m trên) Từ M kẻ đường thẳng ME vuông góc với AD còn MF vuông góc với IC, ta dễ dàng c/m được tam giác MED=Tam giác MFN(cạnh huyền-góc nhọn) =>ME=MF (là hai đường vuông góc tại điểm M gióng xuống hai cạnh của góc \(\widehat{HIC}\))
Theo tính chất của đường phân giác(Điểm nằm trên đường phân giác của góc này thì cách đều hai cạnh tạo thành góc đó)
=> IM là tia phân giác của \(\widehat{HIC}\).
Ta có : HD < HC ( do D nằm giữa H và C)
=> AD<AC ( quan hệ giữa đường xiên hình chiếu ) (1)
mà AD = AB(2)
từ (1) và (2) => AB<AC
Sao làm thiếu câu d mà vẫn dc tích nhỉ :|
d )
Ta có :
\(\widehat{ABD}+\widehat{BDH}=180^0\)( Cặp góc trong cùng phía )
\(\Rightarrow\widehat{ABH}+90^0+35^0=180^0\)
\(\Rightarrow\widehat{ABH}=55^0\)
Mà \(\widehat{ABH}+\widehat{ACH}+\widehat{BAC}=180^0\) ( Tổng 3 góc trong tam giác )
\(\Rightarrow\widehat{ACH}=180^0-\widehat{ABH}+\widehat{BAC}\)
\(\Rightarrow\widehat{ACH}=180^0-55^0-35^0\)
\(\Rightarrow\widehat{ACH}=90^0\)
:| ~~ |:
Giải:
Vì \(AM=AN\) nên \(\Delta AMN\) cân tại A
\(\Rightarrow\widehat{M_1}=\widehat{N_1}\)
Mà \(\widehat{M_1}+\widehat{N_1}+\widehat{A}=180^o\)
\(\Rightarrow2\widehat{N_1}=180^o-\widehat{A}\)
\(\Rightarrow\widehat{N_1}=\frac{180^o-\widehat{A}}{2}\) (1)
Vì t/g ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow2\widehat{C}=180^o-\widehat{A}\)
\(\Rightarrow\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{N_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí đồng vị nên MN // BC ( đpcm )
Vậy...
Vì \(\Delta\)ABC cân tại A nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Ta có: AM = AN => \(\Delta\)AMN cân tại A
=> \(\widehat{AMN}\) = \(\widehat{ANM}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{AMN}\) + \(\widehat{ANM}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AMN}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AMN}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị nên MN // BC.
Lên lớp 8 chỉ cần 3,4 dòng :
Ta có : \(AM/AB=AN/AC\)=> MN//BC ( ĐL Talét đảo)
Vậy ...
Ta có hình vẽ:
a/ Xét tam giác ADE và tam giác EFC có:
DE = EF (GT)
góc AED = góc FEC (đối đỉnh)
AE = EC (GT)
=> tam giác ADE = tam giác EFC (c.g.c)
=> AD = CF (2 cạnh tương ứng)
Ta có: AD = DB (GT)
AD = CF (đã chứng minh trên)
=> DB = CF (1)
Ta có: tam giác ADE = tam giác EFC
=> góc DAE = góc ECF (2 góc tương ứng)
MÀ 2 góc này đang ở vị trí so le trong
=> AD // CF
Vì A,D,B thẳng hàng => DB // CF
=> góc BDC = góc DCF (so le trong) (2)
Ta có: DC: cạnh chung (3)
Từ (1),(2),(3) =>tam giác BDC = tam giác DCF
=> góc FDC = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> DF // BC (đpcm)
b/ Ta có: tam giác BDC = tam giác DCF
=> DF = BC (2 cạnh tương ứng) (1)
Mà theo giả thuyết EF = ED tức DE = EF = \(\frac{1}{2}\)DF (2)
Từ (1),(2) => DE = \(\frac{1}{2}\)BC
a) đề sai nhé bn, sửa BD thành BC
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong nên EC // AD hay EC // AB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC (đpcm)
b) t/g BDC = t/g FCD (câu a)
=> BC = FD (2 cạnh tương ứng)
Mà DE = EF = 1/2 BC suy ra DE = 1/2 BC (đpcm)
Ta có hình vẽ:
a/ Xét tam giác AMB và tam giác CMD có:
BM = MC (GT)
góc AMB = góc CMD (đối đỉnh)
AM = MD (GT)
=> tam giác AMB = tam giác CMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
b/ Ta có: tam giác AMB = tam giác CMD (câu a)
=> góc BAM = góc MDC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // DC (đpcm)
c/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
BM = MC (GT)
AM: chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc AMB = góc AMC (2 góc tương ứng) (*)
Mà góc AMB = góc CMD (đối đỉnh) (**)
Từ (*),(**) = >góc AMC = góc CMD (1)
Ta có: AM = MD (GT) (2)
CM: cạnh chung (3)
Từ (1),(2),(3) => tam giác AMC = tam giác DMC
=> góc ACM = góc DCM (2 góc tương ứng)
=> CM là phân giác góc ACD
hay CB là phân giác góc ACD
a) Xét ΔABM và ΔDCM có:
AM=DM(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
BM=CM(gt)
=> ΔABM=ΔDCM(c.g.c)
=> AB=DC
b) VÌ: ΔABM=ΔDCM(cmt)
=> \(\widehat{ABM}=\widehat{C_2}\) .Mà hai góc này ở vị trí sole trong
=> AB//DC
c)Vì: ΔABC có AB=AC(gt)
=> ΔABC cân tại A
=> \(\widehat{ABM}=\widehat{C_1}\)
Mà: \(\widehat{ABM}=\widehat{C_2}\left(cmt\right)\)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CB là tia phân giác của góc ACD