Hệ hai phương trình bậc nhất hai ẩn

Albert Einstein
Albert Einstein 16 giờ trước (0:52)

Chào bạn!

Bạn phân tích cái đầu thành pt : 4x2 - 4xy +y2 = (2x-y)2=9Từ đó bạn tính được: 2x-y=3 hoặc 2x-y= -3 (1)(1) suy ra được 2x = 3+y hoặc 2x=y-3Sau đó bạn nhân 2 vế của pt 2 cho 2 ta sẽ được pt mới <=> 2x+6y = 10 (2)Tới đây bạn thay 2x vào pt (2)  ( lưu ý là xét 2 TH)Cuối cùng bạn chỉ cần tìm được y sau đó suy ra x nữa là xog . <3 

Bình luận (0)
Trương Huy Hoàng
Trương Huy Hoàng Hôm kia lúc 22:00

nhiệm là cái gì? Đề ko rõ nữa vì M = (1 - x2)x1 + (1 - x1)x2 chả có gì để cm cả :v

Bình luận (0)

\(x^2\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

\(\Leftrightarrow x^2-x-\sqrt{3}x+\sqrt{3}=0\)

\(\Leftrightarrow x\left(x-1\right)-\sqrt{3}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\end{matrix}\right.\)

\(S=\left\{1,\sqrt{3}\right\}\)

 

Bình luận (0)
Nguyễn Duy Khang
Nguyễn Duy Khang CTV Hôm kia lúc 18:56

\(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

Xét \(\Delta=b^2-4ac=\left(1+\sqrt{3}\right)^2-4.1.\sqrt{3}=4-2\sqrt{3}\)

=> Phương trình có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)+\sqrt{4-2\sqrt{3}}}{2.1}=-1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)-\sqrt{4-2\sqrt{3}}}{2.1}=-\sqrt{3}\end{matrix}\right.\)

 

Bình luận (1)

Đề thiếu vế trên rồi em ơi.

Bình luận (2)
Hồng Phúc
Hồng Phúc CTV Hôm kia lúc 19:15

Hệ đẫ cho có nghiệm duy nhất khi \(m\ne-1\)

Bình luận (0)
Trương Huy Hoàng
Trương Huy Hoàng Hôm kia lúc 20:37

\(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m\left(1+y\right)+y=m\end{matrix}\right.\)  \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m+my+y=m\end{matrix}\right.\)   \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y\left(m+1\right)=0\end{matrix}\right.\) (*)

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\) m + 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) -1

Khi đó: (*) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y=\dfrac{0}{m+1}=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+0=1\\y=0\end{matrix}\right.\)

Vậy m \(\ne\) -1 thì hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Chúc bn học tốt!

Bình luận (0)
Hồng Phúc
Hồng Phúc CTV Hôm kia lúc 19:18

Hệ đã cho vô nghiệm khi

\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)

Bình luận (0)
Nguyễn Trọng Chiến
Nguyễn Trọng Chiến Hôm kia lúc 13:04

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-y=1\\2x^2+2y^2+2x-3y=4\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x^2+y^2=y+1\left(1\right)\\2\cdot\left(x^2+y^2\right)+2x-3y=4\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2) ta được: 2(y+1)+2x-3y=4 \(\Leftrightarrow2y+2+2x-3y=4\Leftrightarrow2x-y=2\Leftrightarrow y=2x-2\) (3)

Thay (3) vào (1) ta được:  ⇒ \(x^2+\left(2x-2\right)^2=2x-2+1\) \(\Leftrightarrow x^2+4x^2-8x+4=2x-1\) \(\Leftrightarrow5x^2-10x+5=0\) 

\(\Leftrightarrow5\left(x-1\right)^2=0\Leftrightarrow x=1\left(4\right)\) Thay (4) vào (3) ta được: y=0 

Vậy hpt có nghiệm (x;y)=(1;0)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 18 tháng 1 lúc 23:26

Lời giải:

Từ $0,75x-10y=7,5\Rightarrow y=\frac{3}{40}x-\frac{3}{4}$. Thay vào PT $(2)$ ta có:

$-0,5x+x(\frac{3}{40}x-\frac{3}{4})=5$

$\Leftrightarrow -\frac{5}{4}x+\frac{3}{40}x^2=5$

$\Leftrightarrow 3x^2-50x-200=0$

$\Leftrightarrow (x-20)(3x+10)=0$

$\Rightarrow x=20$ hoặc $x=-\frac{10}{3}$

Nếu $x=20$ thì $y=\frac{3}{40}x-\frac{3}{4}=\frac{3}{4}$

Nếu $x=-\frac{10}{3}$ thì $y=\frac{3}{40}x-\frac{3}{4}=-1$

Vậy..........

Bình luận (0)
Tan Thuy Hoang
Tan Thuy Hoang CTV 18 tháng 1 lúc 12:19

Với m = 0 ta có hpt \(\left\{{}\begin{matrix}2y=1\\2x=-1\end{matrix}\right.\). HPT này không có nghiệm nguyên.

Xét \(m\neq 0\).

Để hpt có nghiệm duy nhất thì: \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\).

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.\Rightarrow\left(m^2-4\right)y=2m^2-3m-2\).

\(\Rightarrow y=\dfrac{2m^2-3m-2}{m^2-4}=\dfrac{2m+1}{m+2}\).

Từ đó ta có \(x=\dfrac{m+1-\dfrac{2\left(2m+1\right)}{m+2}}{m}=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\).

Vậy m là các số sao cho \(\dfrac{2m+1}{m+2}\) là số nguyên (Do \(\dfrac{2m+1}{m+2}-\dfrac{m-1}{m+2}=1\) là số nguyên).

 

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN