Bài 2: Hai tam giác bằng nhau

1) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

2) Ta có: ΔABD=ΔAED(cmt)

nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)(cmt)

nên \(\widehat{KBD}=\widehat{CED}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{KBD}=\widehat{CED}\)(cmt)

BD=ED(cmt)

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDBK=ΔDEC(g-c-g)

3) Ta có: ΔDBK=ΔDEC(cmt)

nên BK=EC(hai cạnh tương ứng)

Ta có: AB+BK=AK(B nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(gt)

và BK=EC(cmt)

nên AK=AC

Xét ΔAKC có AK=AC(cmt)

nên ΔAKC cân tại A(Định nghĩa tam giác cân)

Bình luận (0)

a) Xét ΔAOH vuông tại H và ΔBOH vuông tại H có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))

Do đó: ΔAOH=ΔBOH(cạnh góc vuông-góc nhọn kề)

Suy ra: OA=OB(Hai cạnh tương ứng)

b) Xét ΔCAO và ΔCBO có 

OA=OB(cmt)

\(\widehat{AOC}=\widehat{BOC}\)(OC là tia phân giác của \(\widehat{AOB}\))

OC chung

Do đó: ΔCAO=ΔCBO(c-g-c)

Suy ra: CA=CB(hai cạnh tương ứng) và \(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)

Bình luận (0)
Thanh Hoàng Thanh
27 tháng 1 lúc 19:10

a) Xét tam giác ABC và tam giác ABD có:

AD = AC(gt)

^BAC = ^BAD(=90)

AB chung

=> tam giác ABC = tam giác ABD(c-g-c)

Bình luận (1)

a) Xét ΔABC vuông tại A và ΔABD vuông tại A có 

AB chung

AC=AD(gt)

Do đó: ΔABC=ΔABD(hai cạnh góc vuông)

Bình luận (0)
Trúc Giang
16 tháng 1 lúc 18:02

Hình đâu bạn nhỉ ?

Bình luận (0)
dạ lam
5 tháng 1 lúc 20:53

a) xét △NMI và △MPI có:

MN=MP(GT)MI chung

NMI=PMI(MI là phân giác)

⇒△NMI = △MPI(c.g.c)

ta có:△NMI = △MPI (CMT)

⇒NI=IP(2 cạnh tương ứng)b) ta có:△NMI = △MPI (câu a)⇒NIM+PIM=180o(2 góc kề bù)   NIM= 180o :2   NIM= 90o⇒MI⊥MP
Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN