Bài 3: Góc nội tiếp

Các tứ giác nội tiếp là

ABHY(tâm là trung điểm của AB)

AKHC(tâm là trung điểm của AC)

BKYC(tâm là trung điểm của BC)

AKOY(tâm là trung điểm của AO)

BKOH(tâm là trung điểm của BO)

YOHC(tâm là trung điểm của OC)

Bình luận (0)
gãi hộ cái đít
7 tháng 3 lúc 13:01

Ta có: 

\(\widehat{IAC}=\widehat{CBI}\) (góc nội tiếp cùng chắn cung CI)

\(\widehat{IAC}=\widehat{EBC}\) ( cùng phụ góc C)

\(\Rightarrow\widehat{IBC}=\widehat{EBC}\)

Xét \(\Delta HBI\) có BD là đường phân giác đồng thời là đường cao

=> tam giác HBI cân tại B => BD là đường trung tuyến

=> DH=DI(đpcm)

Bình luận (0)

b) Vì AM và AN lần lượt là hai tia phân giác của hai góc trong và ngoài tại đỉnh A của ΔABC

nên AM và AN lần lượt là hai tia phân giác của hai góc kề bù

\(\widehat{MAN}=90^0\)

Xét ΔAMN có \(\widehat{MAN}=90^0\)(cmt)

nên ΔAMN vuông tại A(Định nghĩa tam giác vuông)

Suy ra: A,M,N cùng nằm trên đường tròn đường kính NM(Định lí)

mà A,M,N cùng nằm trên (O)

nên MN là đường kính của đường tròn (O)

hay O,M,N thẳng hàng(đpcm)

Bình luận (0)

a) Xét (O) có 

\(\widehat{AED}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\widehat{DAM}\) là góc tạo bởi tia tiếp tuyến AM và dây cung AD

Do đó: \(\widehat{AED}=\widehat{DAM}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{AEM}=\widehat{DAM}\)

Xét ΔAEM và ΔDAM có 

\(\widehat{AEM}=\widehat{DAM}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔAEM∼ΔDAM(g-g)

\(\dfrac{ME}{MA}=\dfrac{MA}{MD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(ME\cdot MD=MA^2\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAOM vuông tại A có AH là đường cao ứng với cạnh huyền AO, ta được:

\(MH\cdot MO=AM^2\)

mà \(ME\cdot MD=AM^2\)(cmt)

nên \(MD\cdot ME=MH\cdot MO\)(đpcm)

Bình luận (0)
Chitanda Eru (Khối kiến...
27 tháng 2 lúc 10:59

làm bài nào vậy bạn

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN