Giải hệ phương trình bằng phương pháp thế

Nguyễn Lê Phước Thịnh
Nguyễn Lê Phước Thịnh CTV 8 giờ trước (21:49)

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

Bình luận (1)
tthnew
tthnew Hôm kia lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Bình luận (0)
Quỳnh Anh Nguyễn
Quỳnh Anh Nguyễn 13 tháng 1 lúc 15:59

giúp mình nhé

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 12 tháng 1 lúc 18:02

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt

Bình luận (1)
nguyen thi vang
nguyen thi vang 7 tháng 1 lúc 13:48

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

Bình luận (1)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 20 tháng 9 2020 lúc 21:47

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2\left(\sqrt{x}-1\right)+\sqrt{3x+2}-\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{2\left(x-1\right)}{\sqrt{3x+2}+\sqrt{x+4}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{2}{\sqrt{3x+2}+\sqrt{x+4}}\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 18 tháng 9 2020 lúc 21:35

a.

\(x^2-3y^2+2xy-x+5y-2=0\)

\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)

\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)

Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)

Bạn tự giải nốt

b.

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)

\(\Rightarrow x+y=11\Rightarrow y=11-x\)

Thay vào pt đầu:

\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)

Bạn tự giải nốt

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN