Bài 4: Đường trung bình của tam giác, hình thang

Nguyễn Lê Phước Thịnh
6 giờ trước (20:10)

Gọi K là trung điểm của EC

Xét ΔBEC có 

M là trung điểm của BC(gt)

K là trung điểm của EC(Gt)

Do đó: MK là đường trung bình của ΔBEC

Suy ra: MK//BE

hay MK//DE

Xét ΔAMK có 

D là trung điểm của AM(Gt)

DE//MK(cmt)

Do đó: E là trung điểm của AK(Định lí 1 đường trung bình của tam giác)

Suy ra: AE=EK

mà EK=KC

nên AE=EK=KC

\(\Leftrightarrow AE=\dfrac{EK+KC}{2}=\dfrac{EC}{2}\)

Bình luận (2)
Nguyễn Hoàng Minh
9 giờ trước (16:34)

https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html

Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình

 

Bình luận (0)
ngọc hân
9 giờ trước (16:37)

đây là hình ạ

D A B M C

Bình luận (1)
Nguyễn Lê Phước Thịnh
12 giờ trước (13:42)

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//IK và DE=IK

Bình luận (0)
Trên con đường thành côn...
19 giờ trước (7:11)

undefined

Bình luận (0)

Bài 4: 

a) Xét ΔABC có 

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{AC}{2}\)

hay AC=2MN

b) Xét ΔABC có 

M là trung điểm của BC

MP//AB

Do đó: P là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: \(MP=\dfrac{AB}{2}\)

mà \(BN=\dfrac{AB}{2}\)

nên MP=BN

Xét tứ giác BMPN có 

MP//NB(cmt)

PM=NB(cmt)

Do đó: BMPN là hình bình hành

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN