Đại số lớp 7

Kayoko
14 tháng 4 2017 lúc 8:02

P(x) + Q(x) + H(x) = (2x4 - x - 2x3 + 1) + (5x2 - x3 + 4x) + (-2x4 + x2 + 5)

= 2x4 - x - 2x3 + 1 + 5x2 - x3 + 4x - 2x4 + x2 + 5

= -3x3 + 6x2 + 3x + 6

P(x) - Q(x) - H(x) = (2x4 - x - 2x3 + 1) - (5x2 - x3 + 4x) - (-2x4 + x2 + 5)

= 2x4 - x - 2x3 + 1 - 5x2 + x3 - 4x + 2x4 - x2 - 5

= 4x4 - x3 - 6x2 - 5x - 4

Bình luận (0)
Trần Việt Linh
26 tháng 10 2016 lúc 12:29

a) \(A=\left|x-2016\right|+2017\)

Vì: \(\left|x-2016\right|\ge0\)

=> \(\left|x-2016\right|+2017\ge2017\)

Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)

b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)

Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)

Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)

Bình luận (4)
Nguyễn Đình Thành
28 tháng 10 2016 lúc 7:40

a)Ta có: |x-2016|\(\ge\) 0

=>|x-2016|+2017 \(\ge\) 2017

hay A \(\ge\) 2017

GTNN của A = 2017 khi |x-2016|=0

=>x-2016=0

=>x=0+2016

=>x=2016

Vậy GTNN của A=2017 khi x=2016

b)Tương tự câu a)

Bình luận (0)
Isolde Moria
27 tháng 10 2016 lúc 11:11

Mấy bài cực trị này dễ

Sao dc vào cau hỏi hay nhỉ

Bình luận (0)
Hung nguyen
20 tháng 8 2017 lúc 17:49

Từ đề bài ta có:

\(x+y+z=2\left(ax+by+cz\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=2\left(ax+x\right)\\x+y+z=2\left(by+y\right)\\x+y+z=2\left(cz+z\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=2x\left(1+a\right)\\x+y+z=2y\left(1+b\right)\\x+y+z=2z\left(1+c\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}=\dfrac{2x}{x+y+z}\\\dfrac{1}{1+b}=\dfrac{2y}{x+y+z}\\\dfrac{1}{1+c}=\dfrac{2z}{x+y+z}\end{matrix}\right.\)

\(\Rightarrow Q=\dfrac{2x}{x+y+z}+\dfrac{2y}{x+y+z}+\dfrac{2z}{x+y+z}\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Bình luận (0)
Lê Thị Mỹ Hằng
21 tháng 8 2017 lúc 20:16

Bình luận (0)
Isolde Moria
8 tháng 11 2016 lúc 19:12

a)

Ta có : \(A=\left|x-2\right|+\left|x-5\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)

\(\Rightarrow A\ge3\)

Dấu " = " xảy ra khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow2\le x\le5\)

Vậy MINA=3 khi \(2\le x\le5\)

b)

Ta có :

\(\begin{cases}\left|x-1\right|+\left|x-2016\right|\ge\left|x-1+2016-x\right|=2015\\\left|x-2\right|+\left|x-2015\right|\ge\left|x-2+2015-x\right|=2013\\...\\\left|x-1008\right|+\left|x-1009\right|\ge\left|x-1008+1009-x\right|=1\end{cases}\)

\(\Rightarrow B\ge1+3+....+2015\)=1016064

Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1\ge0\\2016-x\ge0\end{cases}\\....\\\begin{cases}x-1008\ge0\\1009-x\ge0\end{cases}\end{cases}\)\(\Rightarrow1008\le x\le1009\)

Vậy ...........

Bình luận (0)
soyeon_Tiểubàng giải
8 tháng 11 2016 lúc 19:23

A = |x - 2| + |x - 5|

A = |x - 2| + |5 - x|

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) \(\forall x;y\)ta có:

\(A=\left|x-2\right|+\left|5-x\right|\ge\left(x-2\right)+\left(5-x\right)=3\)

Dấu "=" xảy ra khi \(\begin{cases}x-2\ge0\\x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Rightarrow2\le x\le5\)

Vậy GTNN của A là 3 khi \(2\le x\le5\)

B = |x - 1| + |x - 2| + |x - 3| + ... + |x - 2016|

B = |x - 1| + |x - 2| + ... + |x - 1008| + |x - 1009| + |x - 1010| + ... + |x - 2016|

B = |x - 1| + |x - 2| + ... + |x - 1008| + |1009 - x| + |1010 - x| + ... + |2016 - x|

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\forall x;y\) ta có:

\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-1008\right|+\left|1009-x\right|+\left|1010-x\right|+...+\left|2016-x\right|\)

\(\ge\left(x-1\right)+\left(x-2\right)+...+\left(x-1008\right)+\left(1009-x\right)+\left(1010-x\right)+...+\left(2016-x\right)\)

\(B\ge1008^2=1016064\)

Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\1009-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\le1009\end{cases}\)\(\Rightarrow1\le x\le1009\)

Vây GTNN của B là 1016064 khi \(1\le x\le1009\)

Bình luận (3)
Jimmy Neutron
25 tháng 2 2017 lúc 15:23

A=3

B=2015

Bình luận (0)
soyeon_Tiểubàng giải
22 tháng 10 2016 lúc 13:17

Ta có hình vẽ:

A B C D 80

Ta có: ADC + ADB = 180o (kề bù)

=> ADC + 80o = 180o

=> ADC = 180o - 80o = 100o

Vì AD là phân giác của góc A nên \(CAD=DAB=\frac{CAB}{2}\)

Xét Δ ACD có: CAD + ADC + ACD = 180o

=> \(\frac{CAB}{2}\) + 100o + ACD = 180o

=> \(\frac{CAB}{2}\) + ACD = 180o - 100o = 80o (1)

Xét Δ ADB có: ADB + DAB + ABD = 180o

=> 80o + \(\frac{CAB}{2}\) + ABC = 180o

=> \(\frac{CAB}{2}\) + ABC = 180o - 80o = 100o (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{CAB}{2}+ABC\right)-\left(\frac{CAB}{2}+ACD\right)=100^o-80^o\)

=> ABC - ACD = 20o

=> \(\frac{3}{2}ACD-ACD=20^o\)

\(\Rightarrow\frac{1}{2}ACD=20^o\Rightarrow ACD=20^o:\frac{1}{2}=40^o\)

=> ABC = 20o + 40o = 60o

Lại có: ABC + ACD + CAB = 180o

=> 60o + 40o + CAB = 180o

=> 100o + CAB = 180o

=> CAB = 180o - 100o = 80o

Vậy CAB = 80o; ABC = 60o; ACB = ACD = 40o

Bình luận (0)
khánh linh cute
27 tháng 7 2017 lúc 13:16

bạn làm đúng rồi đóvui

Bình luận (0)
ngonhuminh
13 tháng 5 2017 lúc 7:47

\(A=B.C\) đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2y}\end{matrix}\right.\)

\(B=\dfrac{2a^2+b^2}{\left(a-b\right)\left(a^2+b^2+ab\right)}-\dfrac{a}{a^2+ab+b^2}\)

\(B=\dfrac{2a^2+b^2-a\left(a-b\right)}{\left(a-b\right)\left(a^2+b^2+ab\right)}=\dfrac{a^2+b^2+ab}{\left(a-b\right)\left(a^2+b^2+ab\right)}\)

\(B=\dfrac{1}{a-b}\)

\(C=\dfrac{a^3+b^3}{b^2+ab}-a=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{b\left(a+b\right)}-a=\dfrac{a^2+b^2-ab-ab}{b}\)

\(C=\dfrac{\left(a-b\right)^2}{b}\)

\(A=\dfrac{1}{a-b}.\dfrac{\left(a-b\right)^2}{b}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)

\(A=\sqrt{\dfrac{x}{2y}}-1\)

Bình luận (0)
Phạm Tuấn Hưng
23 tháng 5 2017 lúc 9:17

A=\(\sqrt{\dfrac{x}{y2}}-1\)yeu

Bình luận (0)
Lightning Farron
10 tháng 3 2017 lúc 18:51

Ta thấy: \(\left\{{}\begin{matrix}\sqrt{x-2y+1}\ge0\\\left(x-3y\right)^{2012}\ge0\end{matrix}\right.\)\(\forall x,y\)

\(\Rightarrow\sqrt{x-2y+1}+\left(x-3y\right)^{2012}\ge0\forall x,y\)

\(\Rightarrow\sqrt{x-2y+1}+\left(x-3y\right)^{2012}+3\ge3\forall x,y\)

\(\Rightarrow B\ge3\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2y+1}=0\\\left(x-3y\right)^{2012}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\x-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\x=3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Vậy với \(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\) thì \(B_{Min}=3\)

Bình luận (5)
Cường Lê Minh
10 tháng 3 2017 lúc 15:11

3

Bình luận (0)
Song Lam Diệp
15 tháng 3 2017 lúc 15:23

là 3 đó bạnleuleu

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN