Chương II: TÍCH VÔ HƯỚNG CỦA HAI VÉC TƠ VÀ ỨNG DỤNG

Tan Thuy Hoang
Tan Thuy Hoang CTV Hôm kia lúc 21:39

Ta có: \(a\left(a^2-b^2\right)=c\left(b^2-c^2\right)\Leftrightarrow a^3+c^3=b^2c+b^2a\)

\(\Leftrightarrow\left(a+c\right)\left(a^2-ac+c^2\right)=b^2\left(c+a\right)\Leftrightarrow b^2=a^2-ac+c^2\).

Theo định lý hàm cos: \(b^2=a^2+c^2-2cos\widehat{B}.ac\).

Do đó \(cos\widehat{B}=\dfrac{1}{2}\) hay \(\widehat{B}=60^o\).

Bình luận (0)
Hồng Phúc
Hồng Phúc CTV 14 tháng 1 lúc 21:17

\(sinx+cosx=\sqrt{2}\)

\(\Leftrightarrow\left(sinx+cosx\right)^2=2\)

\(\Leftrightarrow sin^2x+cos^2x+2.sinx.cosx=2\)

\(\Leftrightarrow1+2.sinx.cosx=2\)

\(\Leftrightarrow2.sinx.cosx=1\)

Khi đó \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2.sinx.cosx=1^2-1=0\)

Bình luận (0)
Ngô Thành Chung
Ngô Thành Chung 14 tháng 1 lúc 22:08

Giả thiết => cos \(\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{1}{2}\)

⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)

Bình luận (0)
Yehudim
Yehudim 14 tháng 1 lúc 21:00

Gọi K là hình chiếu của A lên BC, I là hình chiếu của B lên AC

\(\Rightarrow\left\{{}\begin{matrix}AK\perp BC\\BI\perp AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}.\overrightarrow{BC}=\overrightarrow{0}\\\overrightarrow{BI}.\overrightarrow{AC}=\overrightarrow{0}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_K-x_A\right)\left(x_C-x_B\right)=0\\\left(y_K-y_A\right)\left(y_C-y_B\right)=0\\\left(x_I-x_B\right)\left(x_C-x_A\right)=0\\\left(y_I-y_B\right)\left(y_C-y_A\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}I\left(...\right)\\K\left(....\right)\end{matrix}\right.\)

Viết phương trình đường thẳng ua A và K; Viết phương trìn đường thẳng ua B và I.

Giao điểm của 2 đường thẳng đó chính là tọa độ trực tâm H

Bình luận (4)
Yehudim
Yehudim 14 tháng 1 lúc 21:06

\(AB^2=AC^2+BC^2-2.AC.BC.\cos C\Rightarrow\sin C=...\)

\(\dfrac{BC}{\sin A}=\dfrac{AC}{\sin B}=\dfrac{AB}{\sin C}=2R\)

Mấu chốt là bạn phải tìm được độ dài các cạnh, độ dài các cạnh :công thức trong SGK

Bình luận (0)
Loading...

Khoá học trên OLM của Đại học Sư phạm HN