Chương 4: SỐ PHỨC

Nguyễn Hương Giang
Xem chi tiết
Nguyễn Trọng Phúc
25 tháng 3 2016 lúc 23:07

a) Giả sử các đỉnh đa giác là các điểm biểu diễn hình học các căn bậc n của đơn vị \(P_o=1\). Xét đa thức :

\(f=z^n-1=\left(z-1\right)\left(z-\omega\right)........\left(z-\omega^{n-1}\right),\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\)

Rõ ràng :

\(n=f'\left(1\right)=\left(1-\omega\right)\left(1-\omega^2\right)...\left(1-\omega^{n-1}\right)\)

Lấy Modun 2 vế ta được kết quả

b) Ta có :

\(1-\omega^k=1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}=2\sin^2\frac{k\pi}{n}-2i\sin\frac{k\pi}{n}\cos\frac{k\pi}{n}\)

          \(=2\sin\frac{k\pi}{n}\left(\sin\frac{k\pi}{n}-i\cos\frac{k\pi}{n}\right)\)

Do đó : \(\left|1-\omega^k\right|=2\sin\frac{k\pi}{n},k=1,2,....,n-1\)

Sử dụng a) ta có điều phải chứng minh

c) Xét đa giác đều \(Q_oQ_1.....Q_{2n-1}\) nội tiếp trong đường tròn, các đỉnh của nó là điểm biểu diễn hình học của \(\sqrt{n}\) của đơn vị.

Theo a) \(Q_oQ_1.Q_oQ_2....Q_oQ_{2n-1}=2n\)

Bây giờ xét đa giác đều \(Q_oQ_2....Q_{2n-1}\)  ta có \(Q_oQ_2.Q_oQ_4..Q_oQ_{2n-2}=n\)

Do đó \(Q_oQ_1.Q_oQ_3..Q_oQ_{2n-1}=2\) Tính toán tương tự phần b) ta được

\(Q_oQ_{2k-1}=2\sin\frac{\left(2k-1\right)\pi}{2n},k=1,2....n\) và ta có điều phải chứng minh

 

Bình luận (0)
Trần Minh Ngọc
Xem chi tiết
Nguyễn Thái Bình
25 tháng 3 2016 lúc 23:45

\(z^3+8=0\)

\(-8=8\left(\cos\pi+i\sin\pi\right)\)

Các nghiệm là :

\(z_k=2\left(\cos\frac{\pi+2k\pi}{3}+i\sin\frac{\pi+2k\pi}{3}\right);k=0,1,2\)

b) \(z^6-z^3\left(1+i\right)+i=0\)

Phương trình tương đương với :

\(\left(z^3-1\right)\left(z^3-i\right)=0\)

Giải phương trình nhị thức \(z^3-1=0,z^3-i=0\) có các nghiệm "

\(\varepsilon=\cos\frac{2k\pi}{3}+\sin\frac{2k\pi}{3},k=0,1,2\)

và :

\(z_k=\cos\frac{\frac{\pi}{2}+2k\pi}{3}+i\sin\frac{\frac{\pi}{2}+2k\pi}{3},k=0,1,2\)

 

Bình luận (0)
Nguyễn Thành Trung
Xem chi tiết
Đặng Minh Quân
6 tháng 4 2016 lúc 15:52

\(\left(1-2i\right)z+\frac{1-3i}{1+i}=2-i\Leftrightarrow z=\frac{1}{5}+\frac{7}{5}i\)

\(\Rightarrow\left|z\right|=\sqrt{2}\)

\(f\left(x\right)=\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right)^{15}\) \(=\Sigma_{k=0}^{15}C^k_{15}x^{\frac{15-k}{3}}.x^{\frac{-k}{2}}.2^k\)

                                  \(=\Sigma_{k=0}^{15}C^k_{15}.x^{5-\frac{5k}{2}}.2^k\)

\(\left(0\le k\le15,\right)k\in Z\)

Hệ số không chứa x ứng với k thỏa mãn : \(5-\frac{5k}{6}=0\Leftrightarrow k=6\) => Hệ số 320320

Bình luận (0)
Đỗ Phương Nam
Xem chi tiết
Phương Thảo
7 tháng 4 2016 lúc 11:19

Giả sử: \(z=x+yi (x;y\in |R)\)

Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)

     <=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)

     <=>\(2x+2yi+2=3x-3yi+5i-i^2\)

     <=>\((3x-2x+1-2)+(5-3y-2y)i=0\)

     <=>\((x-1)+(5-5y)i=0\)

     <=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)

     <=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

Suy ra: z=1+i =>|z|=\(\sqrt{2}\)

Bình luận (0)
Nguyễn Kim Khánh Hà
7 tháng 4 2016 lúc 11:21

Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :

\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)

\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)

Bình luận (0)
Đỗ Thùy Dương
Xem chi tiết
Phạm Thái Dương
7 tháng 4 2016 lúc 16:05

 

Điều kiện \(z\ne0;\left|z\right|\ne1\)

\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)

                               \(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)

                               \(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)

Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :

\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)

\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)

\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)

Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện

Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện

Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)

Bình luận (0)
Trần Thảo Nguyên
Xem chi tiết
Nguyễn Kiều Yến Nhi
11 tháng 4 2016 lúc 16:19

Xét phương trình \(z^2+2z+3=0\)

\(\Delta'=1-3=-2=\left(i\sqrt{2}\right)^2\)

Phương trình có 2 nghiệm \(z_1=-1+i\sqrt{2};z_2=-1-i\sqrt{2}\)

\(\Rightarrow A\left(-1;\sqrt{2}\right);B\left(-1;-\sqrt{2}\right)\)

\(AB=2\sqrt{2}\)

Bình luận (2)
Đỗ Đại Học.
12 tháng 4 2016 lúc 13:01

tìm độ dài AB là tìm modum của số phức z  đúng k?

giải phương trình có 2 nghiệm phức là: z=-1+căn 2i

z2= -1-căn 2i

và sau đó có độ dài AB là căn 3 nhá

tại mk không có phần mền dành cho tón nên các bạn thông cảm nhá.....

 

Bình luận (0)
Hoàng Nhung
Xem chi tiết
Akai Haruma
1 tháng 3 2017 lúc 20:46

Bài 1)

Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).

Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)

Vậy số phức cần tìm là \(\frac{5}{6}+4i\)

b)

\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)

\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)

Bình luận (0)
Minh Đức
Xem chi tiết
Nhók Lì Lợm
2 tháng 6 2016 lúc 10:08

 gọi z= a + bi  \(\left(a,b\in R\right)\)

(2+i)(a+bi)=4-3i

\(\Leftrightarrow\) \(2a-b+\left(a+2b\right)i=4-3i\)

\(\Leftrightarrow\begin{cases}2a-b=4\\a+2b=-3\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1\\b=-2\end{cases}\)

\(z=1-2i\)

w= i(1-2i) + 2( 1+ 2i) = 4 + 5i

Bình luận (0)
Minh Đức
2 tháng 6 2016 lúc 15:12

Mình tưởng tìm moodun của một số \(\sqrt{a^2+b^2}\) chứ. @Nhók Lì Lợm

Bình luận (0)
Minh Đức
Xem chi tiết
Tran Dang Ninh
8 tháng 6 2016 lúc 21:46

Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i

                              →a+bi +2ai -2b +i +2ai +2b=1+3i      (i2= -1)

                             → a+ (4a+b+1)i  = 1+3i

                           →\(\begin{cases}a=1\\4a+b+1=3\end{cases}\)  → a=1 , b=-2  → modum : \(\left|Z\right|\)=\(\sqrt{5}\)

Bình luận (0)