Chương 4: SỐ PHỨC

Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 23 tháng 8 2020 lúc 11:41

Pt có nghiệm phức là \(z=1-2i\) nên \(z=1+2i\) cũng là 1 nghiệm

Theo Viet:

\(\left\{{}\begin{matrix}1-2i+1+2i=-a\\\left(1-2i\right)\left(1+2i\right)=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\c=5\end{matrix}\right.\) \(\Rightarrow a+c=3\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 22 tháng 7 2020 lúc 13:18

Bài toán quy về tìm các cặp x;y phân biệt (có xếp thứ tự) từ tập \(A=\left\{1;2;3;...;25\right\}\) sao cho tổng x+y chẵn

Chia \(A\) thành 2 tập \(B=\left\{1;3;5;...;25\right\}\) chứa 13 số lẻ và \(C=\left\{2;4;6;...;24\right\}\) chứa 12 số chẵn

Để x;y có tổng chẵn thì x;y cùng thuộc B hoặc cùng thuộc C

\(\Rightarrow\) Số kết quả thỏa mãn:

\(13.12+12.11=288\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 19 tháng 7 2020 lúc 14:24

\(z=a+bi\Rightarrow\left\{{}\begin{matrix}a^2+b^2=8\\\sqrt{a^2+\left(b+2\right)^2}+\sqrt{a^2+\left(b-2\right)^2}=4\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{3+b}+\sqrt{3-b}=2\sqrt{2}\)

\(\Leftrightarrow6+2\sqrt{9-b^2}=8\)

\(\Rightarrow b^2=8\Rightarrow a^2=0\Rightarrow z=\pm2\sqrt{2}i\)

\(\Rightarrow\left|z^2+4\right|=4\)

Bình luận (0)
Tú Uyênn
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 22 tháng 6 2020 lúc 5:55

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 22 tháng 6 2020 lúc 5:42

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 22 tháng 6 2020 lúc 5:32

\(z=x+y.i\) \(\Rightarrow\overline{z}=x-yi\)

Theo bài ra ta có:

\(\frac{1}{z}=\overline{z}\Leftrightarrow\frac{1}{x+yi}=x-yi\)

\(\Leftrightarrow\left(x+yi\right)\left(x-yi\right)=1\Leftrightarrow x^2+y^2=1\)

\(\Rightarrow\left|z\right|=1\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 20 tháng 6 2020 lúc 23:46

Pt có 1 nghiệm thực nên \(z=1+i\) là nghiệm thì \(z=1-i\) cũng là nghiệm

Ta có: \(\left\{{}\begin{matrix}\left(1+i\right)+\left(1-i\right)=2\\\left(1+i\right)\left(1-i\right)=2\end{matrix}\right.\)

Do đó theo Viet biểu thức vế trái được phân tích thành

\(\left(z-2\right)\left(z^2-2z+2\right)=z^3-4z^2+6z-4\)

Đồng nhất với biểu thức ban đầu ta được: \(\left\{{}\begin{matrix}a=-4\\b=6\\c=-4\end{matrix}\right.\)

\(\Rightarrow a+b+c=-2\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 20 tháng 6 2020 lúc 23:40

\(z=x+yi\Rightarrow x^2+y^2=1\Rightarrow y^2=1-x^2\)

\(\frac{1}{1-z}=\frac{1}{1-x-yi}=\frac{1-x+yi}{\left(1-x\right)^2+y^2}=\frac{1-x+y.i}{x^2-2x+1+1-x^2}=\frac{1}{2}+\frac{y}{2-2x}.i\)

Phần thực bằng \(\frac{1}{2}\)

Trắc nghiệm: lấy \(z=i\)\(\left|z\right|=1\) khi đó bấm máy \(\frac{1}{1-i}=\frac{1}{2}+\frac{1}{2}i\) chọn luôn đáp án A

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 2 tháng 6 2020 lúc 1:07

Đặt \(z=x+yi\Rightarrow\left\{{}\begin{matrix}\overline{z}=x-yi\\z^2=x^2-y^2+2xy.i\end{matrix}\right.\)

\(\overline{z}=\sqrt{3}z^2\)

\(\Leftrightarrow x-yi=\sqrt{3}\left(x^2-y^2\right)+2\sqrt{3}xy.i\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3}\left(x^2-y^2\right)\\-y=2\sqrt{3}xy\end{matrix}\right.\)

TH1: \(y=0\Rightarrow x=0\Rightarrow z=0\)

TH2: \(2\sqrt{3}x=-1\Rightarrow x=-\frac{1}{2\sqrt{3}}\)

Tổng phần thực là \(-\frac{1}{2\sqrt{3}}\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 30 tháng 5 2020 lúc 15:24

1/

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)

\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)

2/

Đặt \(z=x+yi\)

\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)

\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)

Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)

\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)

\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 30 tháng 5 2020 lúc 15:42

3.

\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)

\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)

\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)

\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)

\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)

\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)

4.

Gọi (Q) là mặt phẳng chứa d và vuông góc (P)

(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt

Phương trình (Q):

\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)

d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:

\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)

\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp

Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 23 tháng 5 2020 lúc 22:46

\(I=\int\limits^1_0\left(\frac{1}{x+1}-\frac{1}{3x+2}\right)dx=\left[ln\left|x+1\right|-\frac{1}{3}ln\left|3x+2\right|\right]|^1_0=\frac{4}{3}ln2-\frac{1}{3}ln5\)

\(w=i\left(1+\frac{1}{3}i\right)+3\left(1+\frac{1}{3}i\right)=\frac{8}{3}+2i\)

\(\Rightarrow\left|z\right|=\sqrt{\left(\frac{8}{3}\right)^2+2^2}=\frac{10}{3}\)

Bình luận (0)
Loading...

Khoá học trên OLM của Đại học Sư phạm HN