Oxyz : cho mặt cầu (S):x2+y2+z2=9 và mặ phẳng (P):4x+2y+4z+7=0. Hai mặt cầu có bán kính R1 và R2 chứ đường tròn giao tuyến (S) và (P) dồng thời tiếp xúc với mặt phẳng (Q):3y-4z-20=0. Tổng R1+R2=?
Mặt cầu (S) tâm O bán kính R=3
Gọi I là hình chiếu vuông góc của O lên (P)
Phương trình đường thẳng d qua O và vuông góc (P) có dạng: \(\left\{{}\begin{matrix}x=2t\\y=t\\z=2t\end{matrix}\right.\)
Tọa độ I thỏa mãn: \(8t+2t+8t+7=0\Rightarrow t=-\frac{7}{18}\Rightarrow I\left(-\frac{7}{9};-\frac{7}{18};-\frac{7}{9}\right)\)
Gọi \(r\) là bán kính đường tròn giao tuyến (S) và (P), ta có \(OI=\frac{7}{6}\Rightarrow r=\frac{5\sqrt{11}}{6}\)
Mặt cầu chứa đường tròn giao tuyến trên có tâm nằm trên d nên gọi tọa độ tâm có dạng \(A\left(2a;a;2a\right)\) và bán kính \(R'\)
\(\left\{{}\begin{matrix}R'=d\left(A;\left(Q\right)\right)\\R'=\sqrt{d^2\left(A;\left(P\right)\right)+r^2}\end{matrix}\right.\)
\(\Rightarrow\frac{\left|3a-8a-20\right|}{\sqrt{3^2+\left(-4\right)^2}}=\sqrt{\frac{\left(8a+2a+8a+7\right)^2}{4^2+2^2+4^2}+\frac{275}{36}}\)
\(\Leftrightarrow\frac{\left(5a+20\right)^2}{25}=\frac{\left(18a+7\right)^2+275}{36}\)
\(\Leftrightarrow8a^2-a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{8}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}R_1=5\\R_2=\frac{25}{8}\end{matrix}\right.\)
Gọi H là chân đường cao hạ từ S xuống (ABC)
\(\overrightarrow{AB}=\left(3;-6;0\right)=3\left(1;-2;0\right)\)
\(\overrightarrow{AC}=\left(5;3;3\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-6;-3;13\right)=-1\left(6;3;-13\right)\)
\(\Rightarrow\) Đường thẳng SH nhận \(\left(6;3;-13\right)\) là 1 vtcp
Phương trình SH: \(\frac{x-3}{6}=\frac{y+1}{3}=\frac{z-6}{-13}\)
1.
\(\overrightarrow{AB}=\left(-7;5;0\right)\) ; \(\overrightarrow{AC}=\left(-5;4;3\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(15;21;-3\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=\sqrt{15^2+21^2+3^2}=\frac{15\sqrt{3}}{2}\)
2.
\(\overrightarrow{u}.\overrightarrow{v}=1.0+0.1+2.\left(-2\right)=-4\)
3.
Gọi \(M\left(0;m;0\right)\) là điểm thuộc trục tung
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+3;7\right)\\\overrightarrow{BM}=\left(-5;m-7;5\right)\end{matrix}\right.\)
\(AM=BM\Leftrightarrow1^2+\left(m+3\right)^2+7^2=5^2+\left(m-7\right)^2+5^2\)
\(\Leftrightarrow6m+59=-14m+99\Rightarrow m=2\Rightarrow M\left(0;2;0\right)\)
4.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|2-3-1+5\right|}{\sqrt{2^2+3^2+1^2}}=\frac{3}{\sqrt{14}}\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=\frac{9}{14}\)
5.
\(\overrightarrow{IA}=\left(3;-2;4\right)\Rightarrow R=IA=\sqrt{3^2+2^2+4^2}=\sqrt{29}\)
Pt mặt cầu: \(\left(x-2\right)^2+\left(y-4\right)^2+\left(z+1\right)^2=29\)
6.
Mặt cầu bán kính \(R=2\)
Thể tích: \(V=\frac{4}{3}\pi R^3=\frac{32\pi}{3}\)
7.
Chắc bạn ghi nhầm, pt có lý là: \(x^2+y^2+z^2-8x+10y-6z+49=0\)
Tọa độ tâm \(I\left(4;-5;3\right)\)
Bán kính: \(R=\sqrt{4^2+5^2+3^2-49}=1\)
8.
Phương trình mặt phẳng:
\(2\left(x-1\right)+3\left(y-2\right)+5\left(z-4\right)=0\)
\(\Leftrightarrow2x+3y+5z-28=0\)
Gọi (Q) là mặt phẳng qua B và song song (P) \(\Rightarrow\) (Q) nhận \(\left(2;-2;1\right)\) là 1 vtpt
Phương trình (Q):
\(2\left(x-2\right)-2\left(y-1\right)+1\left(z-3\right)=0\)
\(\Leftrightarrow2x-2y+z-5=0\)
Gọi C là hình chiếu vuông góc của A lên (Q). Đường thẳng (d') qua A vuông góc (Q) nhận \(\left(2;-2;1\right)\) là 1 vtcp
Phương trình (d'): \(\left\{{}\begin{matrix}x=1+2t\\y=-2t\\z=-2+t\end{matrix}\right.\)
Tọa độ C thỏa mãn:
\(2\left(1+2t\right)-2\left(-2t\right)+\left(-2+t\right)-5=0\Rightarrow t=\frac{5}{9}\) \(\Rightarrow C\left(\frac{19}{9};-\frac{10}{9};-\frac{13}{9}\right)\)
\(\Rightarrow\overrightarrow{BC}=\left(\frac{1}{9};-\frac{19}{9};-\frac{40}{9}\right)=\frac{1}{9}\left(1;-19;-40\right)\)
\(\Rightarrow\left\{{}\begin{matrix}b=-19\\c=-40\end{matrix}\right.\)
Không có đáp án, đề ảo thật
Sure là làm đúng đó, chắc số liệu ko chính xác
Lời giải:
a)
\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}=(1-2, 2-2,3-(-1))=(-1,0,4)\)
b)
\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}+2\overrightarrow{w}=(1-2+2.4,2-2+2.0; 3-(-1)+2(-4))\)
\(=(7, 0, -4)\)
c)
\(\overrightarrow{x}=2\overrightarrow{u}+4\overrightarrow{v}-\overrightarrow{w}=(2.1+4.2-4, 2.2+4.2-0, 2.3+4.(-1)-(-4))\)
\(=(6,12,6)\)
d)
\(2\overrightarrow{x}=3\overrightarrow{u}+\overrightarrow{w}=3(1,2,3)+(4,0,-4)=(3.1+4, 3.2+0,3.3+(-4))\)
\(=(7,6,5)\Rightarrow \overrightarrow{x}=(\frac{7}{2}, 3, \frac{5}{2})\)
e)
\(3\overrightarrow{x}=-2\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}=-2(1,2,3)-(2,2,-1)+(4,0,-4)\)
\(=(-2,-4,-6)-(2,2,-1)+(4,0,-4)=(-2-2+4,-4-2+0,-6-(-1)+(-4))\)
\(=(0,-6,-9)\Rightarrow \overrightarrow{x}=(0,-2,-3)\)