Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Nguyễn Thanh Hà
Xem chi tiết
Nguyễn Hòa Bình
1 tháng 4 2016 lúc 15:33

\(\int\limits^{\frac{\pi}{4}}_0\frac{x}{\cos^2}dx=\int\limits^{\frac{\pi}{4}}_0x.d\left(\tan x\right)=x.\tan|^{\frac{\pi}{4}}_0-\int\limits^{\frac{\pi}{4}}_0\tan xdx=\frac{\pi}{4}+\ln\left(\cos x\right)|^{\frac{\pi}{4}}=\frac{\pi}{4}-\frac{1}{2}\ln2\)

Guyo
Xem chi tiết
Bùi Quỳnh Hương
4 tháng 4 2016 lúc 20:43

Đặt \(u=\ln^2x\rightarrow du=2\ln x\frac{dx}{x},dv=\int\limits x^3dx\rightarrow v=\frac{1}{4}x^4\)

Do đó : \(I=\frac{1}{4}x^4.\ln^2x|^e_1-\frac{1}{4}\int\limits^e_12\ln x.\frac{x^4}{x}dx=\frac{e^4}{4}-\frac{1}{2}\int\limits^e_1x^3\ln sdx=\frac{e^4}{4}-\frac{1}{2}J\left(1\right)\)

Tính \(J=\int\limits^e_1x^3\ln xdx\)

Đặt \(u_1=\ln x\rightarrow du_1=\frac{dx}{x},dv_1=\int x^3dx\rightarrow v_1=\frac{1}{4}x^4\)

Do đó : 

\(J=\frac{1}{4}x^4\ln x|^e_1-\frac{1}{4}\int\limits^e_1x^3dx=\frac{e^4}{4}-\frac{1}{16}x^2|^e_1=\frac{3e^4+1}{16}\)

Thay vào (1) ta có :

\(I=\frac{e^4}{4}-\frac{1}{2}\left(\frac{3e^4+1}{16}\right)=\frac{5e^4-1}{32}\)

Lê Thị Thanh
Xem chi tiết
Đoàn Minh Trang
4 tháng 4 2016 lúc 20:49

Đặt \(u=\ln\left(x^2-x\right)\rightarrow du=\frac{2x-1}{x^2-x}dx,dv=dx\rightarrow v=x\)

Do đó : \(I=x.\ln\left(x^2-x\right)|^3_2-\int\limits^3_2\frac{x\left(2x-1\right)}{x\left(x-1\right)}dx=3\ln6-2\ln2-\int\limits^3_2\frac{2x-2+1}{x-1}dx\)

               \(=\ln54-2\int\limits^3_2dx\frac{d\left(x-1\right)}{x-1}=\ln54-2-\ln\left(x-1\right)|^3_2=3\ln3-2\)

Nguyễn Thị Hà Uyên
Xem chi tiết
Bùi Quỳnh Hương
4 tháng 4 2016 lúc 20:33

Đặt \(u=\ln^3x\rightarrow du=3\ln^2x\frac{dx}{x},dv=dx\rightarrow v=x\)

Do đó : \(I=x\ln^3x|^e_1-3\int\limits^3_1\ln^2xdx=e-3J\left(1\right)\)

Tính \(J=\int\limits^e_1\ln^2xdx\)

Đặt \(u_1=\ln^2x\rightarrow du_1=\frac{2\ln x}{x}dx,dv_1=dx\rightarrow v_1=x\)

Do vậy, \(J=x\ln^2x|^e_1-2\int\limits^e_1\ln xdx=e-2\left(x\ln x|^e_1-\int\limits^e_1dx\right)=e-2\left(x\ln x-x\right)|^e_1=e-2\)

Thay vào (1) ta có : \(I=e-3\left(e-2\right)=6-2e\)

Bùi Thị Ánh Tuyết
Xem chi tiết
Thiên An
4 tháng 4 2016 lúc 16:49

Đặt \(u=\ln x\rightarrow du=\frac{dx}{x};dv=\int x^2dx\rightarrow v=\frac{1}{3}x^3\)

Do đó : \(I=\frac{1}{3}x^3\ln x|^e_1-\frac{1}{3}\int\limits^e_1x^2dx=\frac{e^3}{3}-\frac{1}{3}x^3|^e_1=\frac{2e^3+1}{9}\)

Võ Bình Minh
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Phạm Thảo Vân
4 tháng 4 2016 lúc 21:06

Đặt \(u=\ln x\rightarrow du=\frac{dx}{x},dv=\int_1^2\frac{dx}{x^3}\rightarrow v=-\frac{1}{2x^2}\)

Do vậy : \(I=-\frac{1}{2x^2}\ln x|^2_1+\frac{1}{2}\int\limits^2_1\frac{dx}{x^3}=-\frac{\ln2}{8}-\frac{1}{4x^2}|^2_1=\frac{3-2\ln2}{16}\)

Đinh Hoàng Diệp
23 tháng 9 2017 lúc 14:34

E.Di chuyển

Nguyễn Thanh Hải
Xem chi tiết
Hoàng Thị Tâm
4 tháng 4 2016 lúc 21:12

\(\int\limits^2_1\frac{\ln\left(x+1\right)}{x^2}dx=-\frac{\ln\left(x+1\right)}{x^2}+\int\limits^2_1\frac{1}{x\left(x+1\right)}dx=\ln2-\frac{\ln3}{2}+\int\limits^2_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

                   \(=\ln2-\frac{\ln3}{2}+\ln\left(\frac{x}{x+1}\right)|^2_1=\ln2-\frac{\ln3}{2}-\ln3=\frac{\ln2-3\ln3}{2}\)

Phạm Thị Thúy Giang
Xem chi tiết
Phạm Thái Dương
4 tháng 4 2016 lúc 21:44

\(=\frac{1}{2}\int\limits^1_0\ln\left(1+x^2\right)d\left(1+x^2\right)=\frac{1}{2}\left[\left(1+x^2\right)\ln\left(1+x^2\right)\right]|^1_0-\int\limits^1_0d\left(1+x^2\right)\)

                                          \(=\frac{1}{2}\left[2\ln2-\left(1+x^2\right)|^1_0\right]=\frac{\left(2\ln2-1\right)}{2}\)

Trần Thị Quỳnh Vy
Xem chi tiết
Phạm Thái Dương
4 tháng 4 2016 lúc 21:41

Đặt \(t=x^2+5\rightarrow\begin{cases}dt=2xdx,x=0\rightarrow t=5,x=3\rightarrow t=14\\f\left(x\right)dx=x\ln\left(x^2+5\right)dx=\frac{1}{2}\ln tdt\end{cases}\)

Do đó : \(I=\frac{1}{2}\int\limits^{14}_5\ln tdt=\frac{1}{2}\left(t\ln t\right)|^{14}_5=\frac{14\ln14-5\ln5-11}{2}\)