1) x4 - 8x2 + 4x + 3 = 0
2) x4 - 3x3 - 7x2 + 24x - 8 = 0
3) x4 - x3 - x2 + x + 1 = 0
Giải phương trình??? sử dụng Hooc-ne cho nhanh nhá :v
1) \(x^4-8x^2+4x+3=0\)
( dùng máy tính ta đoán được 1 nghiệm chính xác là -3 )
\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3-3x^2+x+1=0\left(2\right)\end{matrix}\right.\)
Tiếp tục dùng máy tính ta tìm được 1 nghiệm chính xác của pt ( 2 ) là 1
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)
rồi mấy câu còn lại tương tự
Bạn kiểm tra lại đề, nếu x và y theo m đúng thế này thì \(xy\) chỉ có GTNN chứ không có GTLN
Đề thiếu hết dữ liệu tọa độ các điểm rồi bạn
Lời giải:
Do $ABC$ là tam giác nên $\widehat{A}+\widehat{C}=180^0-\widehat{B}$
$\Rightarrow \sin (A+C)=\sin (180-B)=\sin B$ (hai góc bù nhau thì sin bằng nhau)
ĐK: \(-1\le x\le4\)
\(\sqrt{x+1}+\sqrt{4-x}=t\left(\sqrt{5}\le t\le\sqrt{10}\right)\Rightarrow\sqrt{-x^2+3x+4}=\dfrac{t^2-5}{2}\)
\(pt\Leftrightarrow t+\dfrac{t^2-5}{2}=5\)
\(\Leftrightarrow t^2+2t-15=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+5\right)=0\)
\(\Leftrightarrow t=3\left(\text{Vì }\sqrt{5}\le t\le\sqrt{10}\right)\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}=3\)
\(\Leftrightarrow5+2\sqrt{-x^2+3x+4}=9\)
\(\Leftrightarrow\sqrt{-x^2+3x+4}=2\)
\(\Leftrightarrow-x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)