Bài 11: Chia đa thức cho đơn thức

Uyên trần
22 tháng 4 lúc 20:08

a, 

xét \(\Delta\) AHD và \(\Delta\) AHB có 

 <DAH chung 

< ADH=<AHB(=90)

\(\Rightarrow\Delta AHD\) ~ \(\Delta AHB\)

b,\(\dfrac{\Rightarrow AH}{BA}=\dfrac{AD}{AH}\Rightarrow AH^2=AB\cdot AD\)

ta có <ABC+< BAH=90\(^0\)

           < BAH+<HAC=90\(^0\)

\(\Rightarrow\) <ABC=<HAC

xét \(\Delta\) ABH và \(\Delta\) CAH 

<ABH=<CAH (cmt)

<AHB=<AHC(=90)

\(\Rightarrow\Delta ABH\) ~ \(\Delta CAH\)

\(\dfrac{\Rightarrow AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=HB\cdot HC\)

ta có \(AB\cdot AD=AH^2\)

         \(HB\cdot HC=AH^2\)

\(\Rightarrow AD\cdot AB=HB\cdot HC\) (dpcm)

Bình luận (1)
A place to exchang knowl...
22 tháng 4 lúc 19:46

Hình tự vẽ nha

a)    Xét Δ AHD và Δ AB có 

        ∠ H = ∠ D ( = 90o )

           ∠ A chung

Vậy △ AHD ∼ △ADB

 

Bình luận (1)
Nguyễn Văn Hoàng
8 tháng 4 lúc 23:02

Ta có : \(3^{70}+5^{70}=9^{35}+25^{35}\)

Vì 25 là số lẻ suy ra

 \(9^{35}+25^{35}⋮9+25\)

Suy ra A chia hết cho 34

Bình luận (0)
Thu Thủy
24 tháng 3 lúc 19:04

Ta có :

\(a^5-a\)

\(=a\left(a^4+1\right)\)

\(=a\left[\left(a^2\right)^2+1^2\right]\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-2^2+5\right)\)

\(=a\left(a+1\right)\left(a-1\right)\left(a-2\right)\left(a+2\right)+5\left(n-1\right)\left(n+1\right)\) chia hết cho 5

Mà (2, 3, 5) = 1 \(\Rightarrow a^5-a\) chia hết cho 2, 3 và 5

\(\Rightarrow a^5-a\) chia hết cho 30

\(\Rightarrow\left(đpcm\right)\)

Bình luận (0)

Cách khác:

Ta có: \(a^5-a\)

\(=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)\cdot\left(a^2+1\right)\)

Vì a-1 và a là hai số tự nhiên liên tiếp nên \(\left(a-1\right)\cdot a⋮2\)

\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)

mà \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(Do a-1;a;a+1 là ba số tự nhiên liên tiếp)

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)

hay \(a^5-a⋮6\)

mà \(a^5-a⋮5\)(Theo định lí Fermat nhỏ, ta có: Nếu \(a^p-a\) có p là số nguyên tố thì \(a^p-a⋮p\), 5 là số nguyên tố)

nên \(a^5-a⋮30\)(đpcm)

Bình luận (0)
Sunflower
9 tháng 2 lúc 20:01

undefined

Bình luận (0)

Ta có: \(x^3-8x^2+2x⋮x^2+1\)

\(\Leftrightarrow x^3+x-8x^2-8+x⋮x^2+1\)

\(\Leftrightarrow x\left(x^2+1\right)-8\left(x^2+1\right)+x⋮x^2+1\)

mà \(x\left(x^2+1\right)-8\left(x^2+1\right)⋮x^2+1\)

nên \(x⋮x^2+1\)

\(\Leftrightarrow x^2⋮x^2+1\)

\(\Leftrightarrow x^2+1-1⋮x^2+1\)

mà \(x^2+1⋮x^2+1\)

nên \(-1⋮x^2+1\)

\(\Leftrightarrow x^2+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+1\in\left\{1;-1\right\}\)

mà \(x^2+1>0\forall x\)

nên \(x^2+1=1\)

\(\Leftrightarrow x^2=0\)

hay x=0

Vậy: Để \(x^3-8x^2+2x⋮x^2+1\) thì x=0

Bình luận (1)
Nguyễn Lê Phước Thịnh
30 tháng 12 2020 lúc 22:49

Mỗi bạn trồng được số cây phượng là:

\(\dfrac{\left(24x^3+18x^2+36x+27\right)}{\left(12x+9\right)}\)

\(=\dfrac{6x^2\left(4x+3\right)+9\left(4x+3\right)}{3\left(4x+3\right)}\)

\(=\dfrac{\left(4x+3\right)\left(6x^2+9\right)}{3\left(4x+3\right)}\)

\(=\dfrac{3\left(2x^2+3\right)}{3}=2x^2+3\)

Vì số cây phượng là số nguyên dương nên \(2x^2+3\) là số nguyên dương

hay \(2x^2>0\)

\(\Leftrightarrow x^2>0\)

hay x>0

Vậy: Mỗi học sinh trồng được nhiều hơn 3 cây phượng

Bình luận (0)
Dam Thi Mai Huong
24 tháng 12 2020 lúc 23:04

a.( 5x2-4x).(x-3)=5x3-15x2-4x2+12x=5x3-11x2+12x

b.(2-3xy).(3x4+4y2+5xy)=6x4+8y2+10xy-9x5y-12xy3-15x2y2

c.(-3x2+x+1).(x2+x-5)=-3x4-3x3+15+x3+x2-5x+x2+x-5=-3x4-2x3+2x-4x+10                                     

Bình luận (0)
Nguyễn Lê Phước Thịnh
24 tháng 12 2020 lúc 22:32

Bài 1: 

a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)

\(=\dfrac{15x^2y^2z}{3xyz}\)

\(=5xy\)

b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)

\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)

\(=15x^4-12x^3+9x^2\)

c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)

\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)

\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)

\(=2x+5+\dfrac{20}{x-4}\)

d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)

\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)

\(=-15x^3y^2+25x^2y^2-5xy^3\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN