Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

Nguyễn Việt Lâm
8 tháng 5 lúc 21:11

\(11\equiv1\left(mod5\right)\Rightarrow11^n\equiv1^n\left(mod5\right)\Rightarrow11^n-1⋮5\)

Tương tự: \(7^n\equiv2^n\left(mod5\right)\Rightarrow7^n-2^n⋮5\)

\(\Rightarrow A⋮5\)

\(11^n\equiv2^n\left(mod3\right)\Rightarrow11^n-2^n⋮3\)

\(7^n\equiv1^n\left(mod3\right)\Rightarrow7^n-1⋮3\)

\(\Rightarrow A⋮3\)

Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮\left(3.5\right)\) hay \(A⋮15\)

Bình luận (2)
Akai Haruma
19 tháng 4 lúc 19:46

Đề ghi cho biểu thức nhưng lại thiếu biểu thức. Bạn cần bổ sung đề đẩy đủ!

Bình luận (0)

1) Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Bình luận (0)
anonymous
18 tháng 12 2020 lúc 18:58

Ta có:

\(2\sqrt{50}+\sqrt{36}-10\sqrt{2}\\ =10\sqrt{2}+6-10\sqrt{2}\\ =6\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN