Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
tìm các giá trị a sao cho với mọi x , ta luôn có : -1 <= \(\frac{x^2+5x+a}{2x^2-3x+2}\) < 7
Được cập nhật 5 giờ trước (22:20) 6 câu trả lời

Cho x, y, z > 0 và xyz = 1
Tìm GTLN của \(P=\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)
Được cập nhật 13 tháng 2 lúc 16:36 1 câu trả lời

Có: \(x^2-xy+y^2\ge xy\)
\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz\)
\(\Rightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{1}{xy\left(x+y+z\right)}\)
Dấu ''='' xảy ra <=> x = y
Tượng tự có:
\(\dfrac{1}{y^3+z^3+1}\le\dfrac{1}{yz\left(x+y+z\right)}\)
dấu = xảy ra <=> y = z
\(\dfrac{1}{z^3+x^3+1}\le\dfrac{1}{zx\left(x+y+z\right)}\)
dấu ''='' xảy ra <=> z = x
\(\Rightarrow P\le\dfrac{x+y+z}{xyz\left(x+y+z\right)}=1\)
xảy ra khi x = y = z = 1
Cho x,y,z là 3 số dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)
Tìm Min của P = \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
Nhớ làm cách dễ hiểu nha!!!
Được cập nhật 7 tháng 2 lúc 8:39 1 câu trả lời

Lời giải:
Ta sẽ CM BĐT trung gian sau:
\(P\geq \frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Leftrightarrow x^2\left ( \frac{1}{y+z}-\frac{1}{x+y} \right )+y^2\left ( \frac{1}{x+z}-\frac{1}{z+y} \right )+z^2\left ( \frac{1}{x+y}-\frac{1}{z+x} \right )\geq 0\)
\(\Leftrightarrow x^2(x^2-z^2)+y^2(y^2-x^2)+z^2(z^2-y^2)\geq 0\)
\(\Leftrightarrow (x^2-y^2)^2+(y^2-z^2)^2+(z^2-x^2)^2\geq 0\) (luôn đúng)
Giờ ta sẽ tìm min \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Hiển nhiên \(\sum \frac{x^2}{x+y}=\sum \frac{y^2}{x+y}\) nên
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)=A\)
Áp dụng BĐT Cauchy-Schwarz:
\(A\geq \frac{1}{2}\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x+y+z)}=\frac{9}{x+y+z}\)
Áp dụng BĐT Cauchy: \(\sqrt{x^2+y^2}\geq \frac{x+y}{\sqrt{2}}\)
Tương tự với các số còn lại suy ra \(6\geq \sqrt{2}.(x+y+z)\Rightarrow x+y+z\leq 3\sqrt{2}\)
\(\Rightarrow A\geq \frac{3\sqrt{2}}{2}\) kéo theo \(P_{\min}=\frac{3\sqrt{2}}{2}\)
Dấu bằng xảy ra khi \(x=y=z=\sqrt{2}\)
Cho a,b,c > 0 và abc=1. CMR :\(\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\)\(\ge\dfrac{3}{2}\).
Giúp mình với


Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Bài toán trở thành:
Cho $x,y,z>0$. CMR: \(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{3}{2}\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}=\frac{x^6}{x^2yz(x^2+y^2)}+\frac{y^6}{y^2xz(y^2+z^2)}+\frac{z^6}{z^2xy(z^2+x^2)}\)
\(\geq \frac{(x^3+y^3+z^3)^2}{x^2yz(x^2+y^2)+y^2xz(y^2+z^2)+z^2xy(z^2+x^2)}=\frac{(x^3+y^3+z^3)^2}{xyz(x^3+y^3+z^3+xy^2+yz^2+zx^2)}(*)\)
Áp dụng BĐT AM-GM:
\(x^3+y^3+z^3\geq 3xyz\Rightarrow \frac{x^3+y^3+z^3}{3}\geq xyz(1)\)
Và:
\(x^3+y^3+y^3\geq 3xy^2; y^3+z^3+z^3\geq 3yz^2; z^3+x^3+x^3\geq 3zx^2\)
Cộng theo vế và rút gọn \(\Rightarrow x^3+y^3+z^3\geq xy^2+yz^2+zx^2\)
\(\Rightarrow 2(x^3+y^3+z^3)\geq x^3+y^3+z^3+xy^2+yz^2+zx^2(2)\)
Từ \((1);(2)\Rightarrow \frac{2}{3}(x^3+y^3+z^3)^2\geq xyz(x^3+y^3+z^3+xy^3+yz^2+zx^2)(**)\)
Từ \((*);(**)\Rightarrow \frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{(x^3+y^3+z^3)^2}{\frac{2}{3}(x^3+y^3+z^3)^2}=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$


Câu này căn bản mà, hay cách nghĩ của mình đơn giản quá?
ĐKXĐ: \(x\le1\)
\(\Rightarrow2-x\ge1\) \(\Rightarrow\sqrt[3]{2-x}\ge1\Rightarrow\sqrt[3]{2-x}+\sqrt{1-x}\ge1\)
Dấu "=" xảy ra khi \(x=1\)
Vậy nghiệm của BPT đã cho là \(x< 1\)

Nếu đề là \(\sqrt[3]{2-x}+\sqrt{x-1}>1\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}>1-\sqrt[3]{2-x}\) (1)
Do \(x\ge1\Rightarrow\sqrt[3]{2-x}\le1\Rightarrow1-\sqrt[3]{2-x}\ge0\), 2 vế của BPT (1) đều không âm, bình phương 2 vế:
\(x-1>1-2\sqrt[3]{x-2}+\sqrt[3]{\left(2-x\right)^2}\)
\(\Leftrightarrow2-x+\sqrt[3]{\left(2-x\right)^2}-2\sqrt[3]{2-x}< 0\)
Đặt \(\sqrt[3]{2-x}=t\left(t\le1\right)\) BPT trở thành:
\(t^3+t^2-2t< 0\Leftrightarrow t\left(t-1\right)\left(t+2\right)< 0\)
Từ đoạn này trở đi là ez rồi :D
1)Tìm tất cả giá trị của m để phương trình 2x - \(\sqrt{x-3}\) -m =0 có nghiệm
2)Tìm m để phương trình f(x)=3x2-6mx+2m+1=0 có nghiệm thỏa mãn :
a) x1< -1 ≤ x2 c) x1 < x2 ≤ 2
b) 1 < x1 < x2 d) -2 ≤ x1 ≤ x2
3) Tìm m để phương trình x2 + ( x +1 )2 +\(\dfrac{m}{x^2+x+1}\) -3=0 có 4 nghiệm phân biệt
4) f(x) mx2 + 2(m-3)x +2m =0 có 2 nghiệm phân biệt , x1 ∈ (-1;2) nghiệm còn lại x2 ∉ [ -1 ; 2 ]
0 câu trả lời
Cho các số dương x,y thỏa mãn \(x^2+y^2+\frac{1}{xy}=3\) Tìm giá trị lớn nhất của biểu thức:
P=\(2(\frac{1}{1+x^2}+\frac{1}{1+y^2})-\frac{3}{1+2xy}\)
Được cập nhật 3 tháng 1 lúc 18:20 1 câu trả lời

Lời giải:
Áp dụng BĐT AM-GM:
\(3=x^2+y^2+\frac{1}{xy}\geq 2xy+\frac{1}{xy}\)
Đặt \(xy=t\Rightarrow 3\geq 2t+\frac{1}{t}\)
\(\Leftrightarrow 3t\geq 2t^2+1\Leftrightarrow 2t^2-3t+1\leq 0\)
\(\Leftrightarrow (2t-1)(t-1)\leq 0\Rightarrow \frac{1}{2}\leq t\leq 1\)
Với \(t=xy\leq 1\) ta có bổ đề sau:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\leq \frac{2}{xy+1}(*)\)
Việc chứng minh bổ đề trên rất đơn giản. Thực hiện biến đổi tương đương và rút gọn ta thu được:
\((*)\Leftrightarrow (xy-1)(x-y)^2\leq 0\) (luôn đúng do \(xy\leq 1\) )
Áp dụng bổ đề trên vào bài toán đã cho:
\(P=2\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}\right)-\frac{3}{2xy+1}\leq \frac{4}{xy+1}-\frac{3}{2xy+1}\)
\(\Leftrightarrow P\leq \frac{4}{t+1}-\frac{3}{2t+1}\)
Ta sẽ chứng minh \(\frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)
\(\Leftrightarrow \frac{5t+1}{2t^2+3t+1}\leq \frac{7}{6}\)
\(\Leftrightarrow 30t+6\leq 14t^2+21t+7\)
\(\Leftrightarrow 14t^2-9t+1\geq 0\)
\(\Leftrightarrow (2t-1)(7t-1)\geq 0\)
BĐT trên luôn đúng do \(t\geq \frac{1}{2}\)
Như vậy: \(P\leq \frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)
Vậy \(P_{\max}=\frac{7}{6}\). Dấu bằng xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
7 câu trả lời

Cách khác bài 5:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}\geq 3\sqrt[3]{\frac{1}{a(a+b)}.\frac{1}{b(b+c)}.\frac{1}{c(c+a)}}=3\sqrt[3]{\frac{1}{a(b+c)b(c+a)c(a+b)}}=\frac{3}{\sqrt[3]{(ab+ac)(bc+ba)(ca+cb)}}(*)\)
Mà cũng theo BĐT AM-GM:
\((ab+ac)(bc+ba)(ca+cb)\leq \left(\frac{ab+ac+bc+ba+ca+cb}{3}\right)^3=\frac{8}{27}(ab+bc+ac)^3\)
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\)
\(\Rightarrow (ab+ac)(bc+ba)(ca+cb)\leq \frac{8}{27}.\frac{(a+b+c)^6}{27}(**)\)
Từ \((*); (**)\Rightarrow \text{VT}\geq \frac{3}{\sqrt[3]{\frac{8}{27}.\frac{(a+b+c)^6}{27}}}=\frac{27}{2(a+b+c)^2}\)
Ta có đpcm.

Bài 5:
Áp dụng BĐT AM-GM:
\((a+b+c)^2.\text{VT}=\frac{(a+b+c)^2}{a(a+b)}+\frac{(a+b+c)^2}{b(b+c)}+\frac{(a+b+c)^2}{c(c+a)}\)
\(=\frac{(a+b)^2+c^2+2c(a+b)}{a(a+b)}+\frac{a^2+(b+c)^2+2a(b+c)}{b(b+c)}+\frac{b^2+(c+a)^2+2b(c+a)}{c(c+a)}\)
\(=\frac{\frac{1}{4}(a+b)^2+c^2+2c(a+b)+\frac{3}{4}(a+b)^2}{a(a+b)}+\frac{a^2+\frac{1}{4}(b+c)^2+2a(b+c)+\frac{3}{4}(b+c)^2}{b(b+c)}+\frac{b^2+\frac{1}{4}(c+a)^2+2b(c+a)+\frac{3}{4}(c+a)^2}{c(c+a)}\)
\(\geq \frac{c(a+b)+2c(a+b)+\frac{3}{4}(a+b)^2}{a(a+b)}+\frac{a(b+c)+2a(b+c)+\frac{3}{4}(b+c)^2}{b(b+c)}+\frac{b(c+a)+2b(c+a)+\frac{3}{4}(c+a)^2}{c(c+a)}\)
\(=\frac{3c}{a}+\frac{3(a+b)}{4c}+\frac{3a}{b}+\frac{3(b+c)}{4b}+\frac{3b}{c}+\frac{3(c+a)}{4c}\)
\(=3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{3}{4}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)\)
\(\geq 3.3\sqrt[3]{1}+\frac{3}{4}.6\sqrt[6]{1}=\frac{27}{2}\)
Suy ra : \(\text{VT}\geq \frac{27}{2(a+b+c)^2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
tìm min, max \(C=\left(x-3\right)\left(7-x\right)\)với \(3\le x\le7\)
tìm min, max \(D=\left(2x-1\right)\left(3-x\right)\) với \(\dfrac{1}{2}\le x\le3\)
tìm min \(E=\dfrac{\left(x+2017\right)^2}{x}\) với x>0
tìm min \(F=\dfrac{\left(4+x\right)\left(2+x\right)}{x}\) với x>0
tim min \(G=x^2+\dfrac{2}{x^3}\)với x>0
tìm min, max \(H=\sqrt{1-2x}+\sqrt{x+8}\)
Ai làm được câu nào thì giúp mình nha!
Được cập nhật 25 tháng 12 2018 lúc 20:07 4 câu trả lời

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)


Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Cho a,b,c>0 và a+b+c=2
CMR: \(\sqrt{a^2+\dfrac{1}{a^2}}\)+\(\sqrt{b^2+\dfrac{1}{b^2}}\)+\(\sqrt{c^2+\dfrac{1}{c^2}}\) \(\le\)\(\sqrt{\dfrac{97}{4}}\)
Được cập nhật 8 tháng 11 2018 lúc 18:11 3 câu trả lời

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)
\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)
\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)
PS: Lần sau chép đề cẩn thận nhé bạn.

Nếu là \(\ge \) thì easy rồi. Áp dụng BĐT Min....
\(VT=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{9}{a+b+c}\right)^2}\)
\(\ge\sqrt{2^2+\left(\dfrac{9}{2}\right)^2}=\sqrt{\dfrac{97}{4}}=VP\)
Khi \(a=b=c=\frac{2}{3}\)


Trong 3 số x,y,z chắc chắn có 2 số cùng dấu, hoặc cùng dương hoặc cùng âm. Ta có thể giả sử đó là x và y thì \(xy\ge0\)
Từ gỉa thiết : \(8=x^2+y^2+\left(x+y\right)^2=2\left(x+y\right)^2-2xy\le2\left(x+y\right)^2\)
do đó \(\left|x+y\right|\ge2\)
\(VT=\left|x\right|+\left|y\right|+\left|z\right|\ge\left|x+y\right|+\left|z\right|=2\left|x+y\right|\ge4\)(x+y+z=0)
Dấu = xảy ra:\(\left\{{}\begin{matrix}xy=0\\\left|x+y\right|=2\\\left|z\right|=2\end{matrix}\right.\), cùng các hoán vị của điều ta giả sử , ta suy ra Min đạt được khi \(\left(x,y,z\right)=\left(2;0;-2\right)\)và các hoán vị

Tham khảo nhé :))
\(x+y+z=0\)\(\Leftrightarrow\)\(x+y=-z\)\(S=\left|x\right|+\left|y\right|+\left|z\right|\ge\left|x+y\right|+\left|z\right|=\left|-z\right|+\left|z\right|\ge\left|-z+z\right|=\left|0\right|=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}xy\ge0\left(1\right)\\-z^2\ge0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\y\le0\end{matrix}\right.\)
\(\left(2\right)\)\(\Leftrightarrow\)\(z=0\)
Suy ra \(x^2+y^2=8\)
\(\Leftrightarrow\)\(\left(x+y\right)^2-2xy=8\)
\(\Leftrightarrow\)\(\left(-z\right)^2-2xy=8\)
\(\Leftrightarrow\)\(-2xy=8\)
\(\Leftrightarrow\)\(xy=-4\)
\(\Leftrightarrow\)\(y=\dfrac{-4}{x}\)
Lại có \(x+y=0\)
\(\Leftrightarrow\)\(x+\dfrac{-4}{x}=0\)
\(\Leftrightarrow\)\(\dfrac{x^2-4}{x}=0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}y=\dfrac{-4}{2}=-2\\y=\dfrac{-4}{-2}=2\end{matrix}\right.\)
Vậy GTNN của \(S\) là \(0\) khi \(\left(x,y,z\right)=\left\{\left(2;-2;0\right),\left(-2;2;0\right)\right\}\)
Chúc bạn học tốt ~
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Được cập nhật 22 tháng 10 2018 lúc 12:47 1 câu trả lời

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
Cho a;b;c không âm thỏa a+b+c=3. Chứng minh:
\(\dfrac{a}{b^3+16}+\dfrac{b}{c^3+16}+\dfrac{c}{a^3+16}\ge\dfrac{1}{6}\)
Được cập nhật 16 tháng 9 2018 lúc 18:40 2 câu trả lời

Ta có:
\(\sum\dfrac{a}{b^3+16}=\sum\left(\dfrac{a}{16}-\dfrac{ab^3}{16\left(b^3+16\right)}\right)\ge\dfrac{a+b+c}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
\(=\dfrac{3}{16}-\dfrac{ab^2+bc^2+ca^2}{192}\)
Giờ ta cần chứng minh
\(ab^2+bc^2+ca^2\le4\)
Ta có bổ đề:
\(ab^2+bc^2+ca^2+abc\le\dfrac{4\left(a+b+c\right)^3}{27}\)(cái này tự chứng minh nha)
\(\Rightarrow ab^2+bc^2+ca^2\le4-abc\le4\)
Cho a , b , c > 0 thỏa mãn \(a+b+c=3\)
Chứng minh rằng \(\dfrac{ab}{\sqrt{c^2+3}}+\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Được cập nhật 16 tháng 9 2018 lúc 8:53 1 câu trả lời


Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)
Từ (1) , (2) , (3)
\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=1\)
...
Dưới đây là những câu hỏi có bài toán hay do Hoc24 lựa chọn.
Building.
Bảng xếp hạng môn Toán
Nguyễn Huy Tú1835GP
Akai Haruma1752GP
Nguyễn Huy Thắng1636GP
Nguyễn Thanh Hằng1056GP
Mashiro Shiina931GP
Mysterious Person903GP
soyeon_Tiểubàng giải903GP
Võ Đông Anh Tuấn804GP
Phương An797GP
Trần Việt Linh765GP
Nguyễn Trương55GP
Truong Viet Truong18GP
Nguyễn Việt Lâm14GP
Khôi Bùi 13GP
Nguyen11GP
Ánh Lê8GP
Phùng Tuệ Minh7GP
Y7GP
DƯƠNG PHAN KHÁNH DƯƠNG5GP
Bastkoo4GP
TXĐ:D=R
bpt nghiệm đúng với mọi x \(\in\)R
\(\Leftrightarrow-1\le\frac{x^2+5x+a}{2x^2-3x+2}<7\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2+5x+a<7\left(2x^2-3x+2\right)\\x^2+5x+a\ge-\left(2x^2-3x+2\right)\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}13x^2-26x+14-a>0\\3x^2+2x+a+2\ge0\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}\Delta1<0;a1=13>0\\\Delta2\le0;a2=3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}13^2-13\left(14-a\right)<0\\1^2-3\left(a+2\right)\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}a<1\\a\ge\frac{-5}{3}\end{cases}\)
Kết hợp 2 ĐK rồi KL.