giải phương trình log2(5^x+1 - 25^x) = 2
giải phương trình log2(5^x+1 - 25^x) = 2
\(log_2\left(5^{x+1}-25^x\right)=2\) \(\Leftrightarrow5^{x+1}-25^x=2^2\)\(\Leftrightarrow-\left(5^x\right)^2+5.5^x-4=0\).
Đặt \(5^x=t\left(t>0\right)\), phuyowng trình trở thành:
\(-t^2+5t-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\).
\(t=1\Leftrightarrow5^x=1\) \(\Leftrightarrow x=0\).
\(t=4\Leftrightarrow5^x=4\Leftrightarrow x=log_54\).
\(\)log1/2(3x+1)>log1/2(x+7) có bao nhiêu nghiệm nguyên?
Đk: x > -1/3
<=> 3x+1 < x+7
<=> x < 3
kết hợp đk --> -1/3 < x < 3
--> nghiệm nguyên của x = { 0; 1 ; 2 }
Moi người oi giup minh cau nay với
2x^2+2x-9=(x^2-x-3)×8^(x^2+3x-6)+(x^2+3x-6)×8^(x^2-x-3)
1/2log(x^2+x-5)=log(5x)+log1/5x ai biết hướng dẫn giúp e với ạ
\(\dfrac{1}{2}\)log(x2 + x - 5)=log(5x)+log(\(\dfrac{1}{5x}\))
⇔\(\sqrt{x^2+x-5}\) = 5x.\(\dfrac{1}{5x}\)
⇔x2 + x - 5=1 ⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Kết hợp với ĐKXĐ của hàm nên chỉ có x=2 thoả mãn yêu cầu bài tập
Giải phương trình
-x3 + 2x +7 = 0
Tổng giá trị tất cả các nghiệm của phương trình log3 x.log9 x.log27 x.log81 x=2/3 bằng
A.82/9 C.9
B.80/9 D.0
tìm m để pt có 3 nghiệm phân biệt lập thành 1 cấp số công:
x^3-6x^2+(m^2+2)x-m-3=0
Tìm số nghiệm của phương trình log2(x)-log4(x-3)=2
ĐKXĐ: \(x>3\)
\(\log_2x-\dfrac{1}{2}log_2\left(x-3\right)=2\)
\(\Leftrightarrow2\log_2x-log_2\left(x-3\right)=4\)
\(\Leftrightarrow\log_2\dfrac{x^2}{x-3}=4\)
\(\Leftrightarrow\dfrac{x^2}{x-3}=16\)
\(\Leftrightarrow x^2-16x+48=0\Rightarrow\left[{}\begin{matrix}x=12\\x=4\end{matrix}\right.\)
ĐKXĐ: \(x>0;x\ne\left\{\dfrac{1}{2};2\right\}\)
\(\Leftrightarrow\dfrac{2}{1-log_2x}+\dfrac{\dfrac{1}{2}log_2x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\)
Đặt \(log_2x=t\ne\pm1\)
\(\Rightarrow\dfrac{2}{1-t}+\dfrac{t}{2\left(1+t\right)}>\dfrac{t}{1-t^2}\)
\(\Leftrightarrow\dfrac{4\left(1+t\right)+t\left(1-t\right)-2t}{2\left(1-t\right)\left(1+t\right)}>0\)
\(\Leftrightarrow\dfrac{-t^2+3t+4}{2\left(1-t\right)\left(1+t\right)}>0\Leftrightarrow\dfrac{\left(t+1\right)\left(4-t\right)}{2\left(1-t\right)\left(1+t\right)}>0\)
\(\Leftrightarrow\dfrac{4-t}{1-t}>0\Rightarrow\left[{}\begin{matrix}t>4\\t< 1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}log_2x>4\\log_2x< 1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>16\\0< x< \dfrac{1}{2}\\\dfrac{1}{2}< x< 2\end{matrix}\right.\)
Đề bài là:
\(\dfrac{2}{1-log_2x}+\dfrac{log_4x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\) đúng ko bạn?