Bài 5: Phương trình mũ và phương trình lôgarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chang Nè
Xem chi tiết
Bùi Thị Vân
1 tháng 12 2017 lúc 8:50

\(log_2\left(5^{x+1}-25^x\right)=2\) \(\Leftrightarrow5^{x+1}-25^x=2^2\)\(\Leftrightarrow-\left(5^x\right)^2+5.5^x-4=0\).
Đặt \(5^x=t\left(t>0\right)\), phuyowng trình trở thành:
\(-t^2+5t-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\).
\(t=1\Leftrightarrow5^x=1\) \(\Leftrightarrow x=0\).
\(t=4\Leftrightarrow5^x=4\Leftrightarrow x=log_54\).

Nguyễn Hồng Nhung
Xem chi tiết
Sói Silver
5 tháng 5 2018 lúc 3:59

Đk: x > -1/3

<=> 3x+1 < x+7

<=> x < 3

kết hợp đk --> -1/3 < x < 3

--> nghiệm nguyên của x = { 0; 1 ; 2 }

Nguyễn long Đức
Xem chi tiết
Như Quỳnh
Xem chi tiết
hồng nguyễn
18 tháng 5 2018 lúc 14:08

\(\dfrac{1}{2}\)log(x2 + x - 5)=log(5x)+log(\(\dfrac{1}{5x}\))

\(\sqrt{x^2+x-5}\) = 5x.\(\dfrac{1}{5x}\)

⇔x2 + x - 5=1 ⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Kết hợp với ĐKXĐ của hàm nên chỉ có x=2 thoả mãn yêu cầu bài tập

Lê Thu Phương
Xem chi tiết
Lê Nhi
Xem chi tiết
Lê Nhi
20 tháng 6 2018 lúc 13:40

undefined

Dương Thị Hường
Xem chi tiết
Trắng Bé
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 1:39

ĐKXĐ: \(x>3\)

\(\log_2x-\dfrac{1}{2}log_2\left(x-3\right)=2\)

\(\Leftrightarrow2\log_2x-log_2\left(x-3\right)=4\)

\(\Leftrightarrow\log_2\dfrac{x^2}{x-3}=4\)

\(\Leftrightarrow\dfrac{x^2}{x-3}=16\)

\(\Leftrightarrow x^2-16x+48=0\Rightarrow\left[{}\begin{matrix}x=12\\x=4\end{matrix}\right.\)

Nguyễn Đăng Hoàng Anh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2021 lúc 19:31

ĐKXĐ: \(x>0;x\ne\left\{\dfrac{1}{2};2\right\}\)

\(\Leftrightarrow\dfrac{2}{1-log_2x}+\dfrac{\dfrac{1}{2}log_2x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\)

Đặt \(log_2x=t\ne\pm1\)

\(\Rightarrow\dfrac{2}{1-t}+\dfrac{t}{2\left(1+t\right)}>\dfrac{t}{1-t^2}\)

\(\Leftrightarrow\dfrac{4\left(1+t\right)+t\left(1-t\right)-2t}{2\left(1-t\right)\left(1+t\right)}>0\)

\(\Leftrightarrow\dfrac{-t^2+3t+4}{2\left(1-t\right)\left(1+t\right)}>0\Leftrightarrow\dfrac{\left(t+1\right)\left(4-t\right)}{2\left(1-t\right)\left(1+t\right)}>0\)

\(\Leftrightarrow\dfrac{4-t}{1-t}>0\Rightarrow\left[{}\begin{matrix}t>4\\t< 1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}log_2x>4\\log_2x< 1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>16\\0< x< \dfrac{1}{2}\\\dfrac{1}{2}< x< 2\end{matrix}\right.\)

Nguyễn Việt Lâm
12 tháng 1 2021 lúc 19:07

Đề bài là:

\(\dfrac{2}{1-log_2x}+\dfrac{log_4x}{1+log_2x}>\dfrac{log_2x}{1-log_2^2x}\) đúng ko bạn?