Cho hàm số y = \(\dfrac{\left(4-m\right)\sqrt{6-x}+3}{\sqrt{6-x}+m}\) . Có bao nhiêu giá trị nguyên của m trong khoảng (-10; 10) sao cho hàm số đồng biến trên (-8; 5)
Cho hàm số y = \(\dfrac{\left(4-m\right)\sqrt{6-x}+3}{\sqrt{6-x}+m}\) . Có bao nhiêu giá trị nguyên của m trong khoảng (-10; 10) sao cho hàm số đồng biến trên (-8; 5)
Đơn giản là hãy đặt \(\sqrt{6-x}=t\ge0\)
Do x và t nghịch biến nhau nên \(y=f\left(x\right)\) đồng biến trên \(\left(-8;5\right)\) đồng nghĩa \(y=f\left(t\right)\) nghịch biến trên \(\left(1;\sqrt{14}\right)\) (tại sao lại cho con số này nhỉ, (-10;5) chẳng hạn có tốt ko?)
\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(t\right)\le0\\t+m=0\text{ vô nghiệm trên (0;\sqrt{14})}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Xét hàm \(f\left(x\right)=x-\dfrac{2}{log_3\left(x+1\right)}\) với \(\left\{{}\begin{matrix}x>-1\\x\ne0\end{matrix}\right.\)
\(f'\left(x\right)=1+\dfrac{2}{\left(x+1\right)log_3^2\left(x+1\right).ln3}>0\) ; \(\forall x\in D\)
\(\Rightarrow\) Hàm đồng biến trên TXĐ
\(\lim\limits_{x\rightarrow-1^+}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=-1-\dfrac{2}{-\infty}=-1\)
\(\lim\limits_{x\rightarrow0^-}\left(x+\dfrac{2}{-log_3\left(x+1\right)}\right)=0+\dfrac{2}{0}=+\infty\)
\(\lim\limits_{x\rightarrow0^+}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=0-\dfrac{2}{0}=-\infty\)
\(\lim\limits_{x\rightarrow+\infty}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=+\infty-0=+\infty\)
Ta có BBT:
Từ BBT ta thấy \(y=m\) cắt \(y=f\left(x\right)\) tại 2 điểm khi và chỉ khi \(m>-1\)
\(\Rightarrow\) Có 2022 giá trị nguyên thỏa mãn
khảo sát hàm số sau
a) y=\(2x^3-3x^2+1\)
b) y= \(3x-\dfrac{x^3}{4}\)
tìm m để pt có 3 nghiệm pb : \(4x^3-6x^2+m=0\)
tìm m ? thì y=\(\dfrac{x-3}{x+1}\) cắt y=x+m tại 2 điểm phân biệt
m? thì y=\(\dfrac{x+1}{x-1}\), y=-2x+m cắt tại 2 điểm phân biệt
1.
\(4x^3-6x^2+m=0\Leftrightarrow4x^3-6x^2=-m\)
Xét hàm \(f\left(x\right)=4x^3-6x^2\)
\(f'\left(x\right)=12x^2-12x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
BBT:
Từ BBT ta thấy đường thẳng \(y=-m\) cắt \(y=4x^3-6x^2\) tại 3 điểm pb khi:
\(-2< -m< 0\Leftrightarrow0< m< 2\)
2.
Pt hoành độ giao điểm:
\(\dfrac{x-3}{x+1}=x+m\)
\(\Rightarrow x-3=\left(x+m\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+mx+m+3=0\) (1)
Đường thẳng cắt đồ thị tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}m>6\\m< -2\end{matrix}\right.\)
3.
Pt hoành độ giao điểm:
\(\dfrac{x+1}{x-1}=-2x+m\)
\(\Leftrightarrow x+1=\left(x-1\right)\left(-2x+m\right)\)
\(\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\) (1)
bài toán thỏa mãn khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+1\right)^2-8\left(m+1\right)>0\)
\(\Leftrightarrow\left(m+1\right)\left(m-7\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}m>7\\m< -1\end{matrix}\right.\)
cho hs y=\(x^3+\left(m+3\right)x^2-2-m=0\) (1)
m? để (1) cắt Ox tại 3 điểm pb
Pt hoành độ giao điểm:
\(x^3+\left(m+3\right)x^2-2-m=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+\left(m+2\right)x-m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+\left(m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)
Đồ thị hàm số cắt Ox tại 3 điểm pb khi và chỉ khi (1) có 2 nghiệm pb khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=1-\left(m+2\right)-m-2\ne0\\\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m-3\ne0\\m^2+8m+12>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-\dfrac{3}{2}\\\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\end{matrix}\right.\)
tìm m để \(x^3+3x^2+\left(1-m\right)x+1\ge0\) ( mọi x >=0)
tìm m để pt có 2ng phân biệt \(\sqrt{x^2+mx+2}=2x+1\)
a.
\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)
- Với \(x=0\) thỏa mãn
- Với \(x>0\)
(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)
\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)
Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)
\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)
Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)
\(\Rightarrow m\le\dfrac{19}{4}\)
b.
Bài toán thỏa mãn khi:
\(x^2+mx+2=\left(2x+1\right)^2\Leftrightarrow3x^2-\left(m-4\right)x-1=0\) (1) có 2 nghiệm pb thỏa mãn \(-\dfrac{1}{2}\le x_1< x_2\) (2)
Do \(ac=-3< 0\) nên (1) luôn có 2 nghiệm pb
Để 2 nghiệm của (1) thỏa mãn (2) thì:
\(\left\{{}\begin{matrix}\left(x_1+\dfrac{1}{2}\right)\left(x_2+\dfrac{1}{2}\right)\ge0\\\dfrac{x_1+x_2}{2}>-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+\dfrac{1}{2}\left(x_1+x_2\right)+\dfrac{1}{4}\ge0\\x_1+x_2>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}+\dfrac{m-4}{6}+\dfrac{1}{4}\ge0\\\dfrac{m-4}{3}>-1\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{9}{2}\)
1. có bn số nguyên m để y=\(\dfrac{mx+3}{3x+m}\) giảm trên \(\left(0;+\infty\right)\)
2. tìm m đẻ hs y=\(-x^3-6x^2+\left(4m-9\right)x+4\) giảm trên \(\left(-\infty;-1\right)\)
3. tìm m để y=\(x^3-mx^2+x+1\) tăng trên \(\left(0;+\infty\right)\)
1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)
ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le3\)
1.tìm m để hs y=\(\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
2. có bn số nguyên m để hs y=\(x^3+mx-\dfrac{1}{5x^2}\) đồng biến trên \(\left(0;+\infty\right)\)
3. có bn số nguyên m để hs y=\(\dfrac{mx-4}{x-m}\) tăng trên \(\left(0;+\infty\right)\)
Giải giúp mình câu 2,3,4 với
Khảo sát sự biến thiên và vẽ đồ thị hầm số:
a) y= x4+2x2-3
b) y= -x4-4x-1