Bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 23:11

Đơn giản là hãy đặt \(\sqrt{6-x}=t\ge0\)

Do x và t nghịch biến nhau nên \(y=f\left(x\right)\) đồng biến trên \(\left(-8;5\right)\) đồng nghĩa \(y=f\left(t\right)\) nghịch biến trên \(\left(1;\sqrt{14}\right)\) (tại sao lại cho con số này nhỉ, (-10;5) chẳng hạn có tốt ko?)

\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(t\right)\le0\\t+m=0\text{ vô nghiệm trên (0;\sqrt{14})}\end{matrix}\right.\)  

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
6 tháng 5 2021 lúc 19:50

Xét hàm \(f\left(x\right)=x-\dfrac{2}{log_3\left(x+1\right)}\) với \(\left\{{}\begin{matrix}x>-1\\x\ne0\end{matrix}\right.\)

\(f'\left(x\right)=1+\dfrac{2}{\left(x+1\right)log_3^2\left(x+1\right).ln3}>0\) ; \(\forall x\in D\)

\(\Rightarrow\) Hàm đồng biến trên TXĐ

\(\lim\limits_{x\rightarrow-1^+}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=-1-\dfrac{2}{-\infty}=-1\)

\(\lim\limits_{x\rightarrow0^-}\left(x+\dfrac{2}{-log_3\left(x+1\right)}\right)=0+\dfrac{2}{0}=+\infty\)

\(\lim\limits_{x\rightarrow0^+}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=0-\dfrac{2}{0}=-\infty\)

\(\lim\limits_{x\rightarrow+\infty}\left(x-\dfrac{2}{log_3\left(x+1\right)}\right)=+\infty-0=+\infty\)

Ta có BBT:

undefined

Từ BBT ta thấy \(y=m\) cắt \(y=f\left(x\right)\) tại 2 điểm khi và chỉ khi \(m>-1\)

\(\Rightarrow\) Có 2022 giá trị nguyên thỏa mãn

nguyen thi be
Xem chi tiết
nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2021 lúc 17:42

1.

\(4x^3-6x^2+m=0\Leftrightarrow4x^3-6x^2=-m\)

Xét hàm \(f\left(x\right)=4x^3-6x^2\)

\(f'\left(x\right)=12x^2-12x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

BBT:

x y' y 0 1 0 0 - + + 0 -2

Từ BBT ta thấy đường thẳng \(y=-m\) cắt \(y=4x^3-6x^2\) tại 3 điểm pb khi:

\(-2< -m< 0\Leftrightarrow0< m< 2\)

Nguyễn Việt Lâm
24 tháng 6 2021 lúc 17:45

2.

Pt hoành độ giao điểm:

\(\dfrac{x-3}{x+1}=x+m\)

\(\Rightarrow x-3=\left(x+m\right)\left(x+1\right)\)

\(\Leftrightarrow x^2+mx+m+3=0\) (1)

Đường thẳng cắt đồ thị tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}m>6\\m< -2\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 6 2021 lúc 17:47

3.

Pt hoành độ giao điểm:

\(\dfrac{x+1}{x-1}=-2x+m\)

\(\Leftrightarrow x+1=\left(x-1\right)\left(-2x+m\right)\)

\(\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\) (1)

bài toán thỏa mãn khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+1\right)^2-8\left(m+1\right)>0\)

\(\Leftrightarrow\left(m+1\right)\left(m-7\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}m>7\\m< -1\end{matrix}\right.\)

nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 6 2021 lúc 16:19

Pt hoành độ giao điểm:

\(x^3+\left(m+3\right)x^2-2-m=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+\left(m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+\left(m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

Đồ thị hàm số cắt Ox tại 3 điểm pb khi và chỉ khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=1-\left(m+2\right)-m-2\ne0\\\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m-3\ne0\\m^2+8m+12>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-\dfrac{3}{2}\\\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\end{matrix}\right.\)

nguyen thi be
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 8:34

Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:47

a.

\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)

- Với \(x=0\) thỏa mãn

- Với \(x>0\)

(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)

\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)

Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)

\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)

\(\Rightarrow m\le\dfrac{19}{4}\)

Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:51

b.

Bài toán thỏa mãn khi:

\(x^2+mx+2=\left(2x+1\right)^2\Leftrightarrow3x^2-\left(m-4\right)x-1=0\) (1) có 2 nghiệm pb thỏa mãn \(-\dfrac{1}{2}\le x_1< x_2\) (2)

Do \(ac=-3< 0\) nên (1) luôn có 2 nghiệm pb

Để 2 nghiệm của (1) thỏa mãn (2) thì:

\(\left\{{}\begin{matrix}\left(x_1+\dfrac{1}{2}\right)\left(x_2+\dfrac{1}{2}\right)\ge0\\\dfrac{x_1+x_2}{2}>-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+\dfrac{1}{2}\left(x_1+x_2\right)+\dfrac{1}{4}\ge0\\x_1+x_2>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}+\dfrac{m-4}{6}+\dfrac{1}{4}\ge0\\\dfrac{m-4}{3}>-1\end{matrix}\right.\)  \(\Rightarrow m\ge\dfrac{9}{2}\)

nguyen thi be
Xem chi tiết
Thao An
27 tháng 6 2021 lúc 16:12

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

nguyen thi be
Xem chi tiết
nanako
Xem chi tiết