Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

Akai Haruma
19 tháng 4 2018 lúc 0:32

Lời giải:

Đặt \(x=\tan t(t\in \left(\frac{\pi}{2}; \frac{\pi}{2}\right))\Rightarrow t=\arctan x\)

Khi đó:

\(P=\int \frac{e^{\arctan x}}{x^2+1}d(x)=\int \frac{e^td(\tan t)}{\tan ^2t+1}\)

\(=\int \frac{e^t}{\frac{1}{\cos^2t}}.\frac{dt}{\cos ^2t}=\int e^tdt=e^t+c\)

Do đó: \(P=\int \frac{e^{\arctan x}}{x^2+1}dx=e^{\arctan x}+c\)

Bình luận (0)
Toàn Nguyễn Đức
Xem chi tiết
Dat Tien Le
Xem chi tiết
Nguyễn Hoàng Việt
12 tháng 1 2017 lúc 22:32

\(\int\frac{1}{sin^2-4cos^2x}dx=\int\frac{\frac{dx}{cos^2x}}{tan^2x-4}\)

\(=\int\frac{1}{tan^2x-4}d\left(tanx\right)=\int\frac{d\left(tanx\right)}{\left(tanx-2\right)\left(tanx+2\right)}\\ =\frac{1}{4}\int\left(\frac{1}{tanx-2}-\frac{1}{tanx+2}\right)d\left(tanx\right)\\ =\frac{1}{4}\left(ln\left|tanx-2\right|-ln\left|tanx+2\right|\right)+C\\ =\frac{1}{4}ln\left|\frac{tanx-2}{tanx+2}\right|+C\)

Bình luận (0)
Akai Haruma
15 tháng 12 2016 lúc 2:08

Giải như sau: Cho biểu thức cần tính là $A$

Đặt \(\begin{cases}u=x\\dv=\frac{\cos x}{\sin^3x}dx\end{cases}\) \(\Rightarrow\) \(\begin{cases}du=dx\\v=\int\frac{\cos xdx}{\sin^3x}=\int\end{cases}\frac{d\left(\sin x\right)}{\sin^3x}=\frac{-1}{2\sin^2x}}\)

Áp dụng quy tắc nguyên hàm từng phần:

\(A=-\frac{x}{2\sin^2x}+\int\frac{1}{2\sin^2x}dx=\frac{-x}{2\sin^2x}-\frac{1}{2}\int d\left(\cot x\right)=\frac{-x}{2\sin^2x}-\frac{\cot x}{2}\)

 

Bình luận (1)
Phương Anh
Xem chi tiết
Phương Anh
Xem chi tiết
Nguyễn Bình Nguyên
Xem chi tiết
Phạm Thảo Vân
18 tháng 3 2016 lúc 21:32

a) Ta thực hiện phép đổi biến :

\(1+\sqrt{x}=t\)  ;  \(x=\left(t-1\right)^2\) ; \(dx=2\left(t-1\right)dt\)

Khi đó \(\left(1+\sqrt{x}\right)^{10}dx=t^{10}.2\left(t-1\right)dt\)

tức là :

\(I_1=2\int\left(t^{11}-t^{10}\right)dt=2\int t^{11}dt-2\int t^{10}dt=2\left(\frac{t^{12}}{12}-\frac{t^{11}}{11}\right)+C\)

                                  \(=\frac{1}{66}t^{11}\left(11t-12\right)+c\)

                                  \(=\frac{1}{66}\left(1+\sqrt{x}\right)^{11}\left[11\sqrt{x}-1\right]+C\)

b) Đặt \(x^2+a=t\)

Ta có \(2xdx=dt\)

\(I_2=\frac{1}{2}\int\frac{dt}{\sqrt[3]{t}}=\frac{1}{2}\int t^{-\frac{1}{3}}dt=\frac{1}{2}.\frac{3}{2}t^{\frac{2}{3}}+C=\frac{3}{4}\sqrt[3]{\left(x^2+a\right)^2+C}\)

 

c) Đặt \(x^3=t\Rightarrow3x^2dx=dt\)

và \(I_3=\frac{1}{3}\int\frac{dt}{\sqrt{t^2+6}}=\frac{1}{3}\ln\left[t+\sqrt{t^2+6}\right]+C\)

                              \(=\frac{1}{3}\ln\left[x^2+\sqrt{x^2+6}\right]+C\)

Bình luận (0)
Nguyễn Trọng Nghĩa
Xem chi tiết
Bắc Băng Dương
23 tháng 1 2016 lúc 11:14

Thực hiện theo các bước sau :

Bước 1 : Biến đổi :

\(a_1\sin x+b_1\cos x=A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)\)

Bước 2 : Khi đó :

\(I=\int\frac{A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)}{\left(a_2\sin x+b_2\cos x\right)^2}dx=A\int\frac{dx}{a_2\cos x+b_2\sin x}+B\int\frac{\left(a_2\cos x+b_2\sin x\right)dx}{\left(a_2\cos x+b_2\sin x\right)^2}\)

\(=\frac{A}{\sqrt{a^2_2+b^2_2}}\int\frac{dx}{\sin\left(x+\alpha\right)}-B\int\frac{1}{a_2\sin x+b_2\cos x}dx=\frac{A}{\sqrt{a^2_2+b^2_2}}\ln\left|\tan\left(\frac{x+\alpha}{2}\right)\right|-\frac{B}{a_2\cos x+b_2\sin x}+C\)

Trong đó : \(\sin\alpha=\frac{b_2}{\sqrt{a^2_2+b^2_2}_{ }};\cos\alpha=\frac{a_2}{\sqrt{a^2_2+b^2_2}}\)

Bình luận (0)
Phạm Thái Dương
Xem chi tiết
Nguyễn Hòa Bình
23 tháng 1 2016 lúc 11:40

Biến đổi : 

\(\frac{8\cos x}{3\sin^2x+2\sqrt{3}\sin x\cos x+\cos x^2}=\frac{8\cos x}{\left(\sqrt{3}\sin x+\cos x\right)^2}\)

Giả sử :

\(8\cos x=a\left(\sqrt{3}\sin x+\cos x\right)+b\left(\sqrt{3}\cos x-\sin x\right)=\left(a\sqrt{3}-b\right)\sin x+\left(a+b\sqrt{3}\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có hệ :

\(\begin{cases}a\sqrt{3}-b=0\\a+b\sqrt{3}=8\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=2\sqrt{3}\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2}{\sqrt{3}\sin x-\cos x}-\frac{2\sqrt{3}\left(\left(\sqrt{3}\cos x-\sin x\right)\right)}{\sqrt{3}\sin x-\cos x}\)

Trong đó :

\(F\left(x\right)=\int\frac{2dx}{\sqrt{3}\sin x+\cos x}-\frac{2\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)dx}{\sqrt{3}\sin x+\cos x}=\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\right|-\frac{2\sqrt{3}}{\sqrt{3}\sin x+\cos x}+C\)

 

Bình luận (0)
Nguyễn Bùi Đại Hiệp
23 tháng 1 2016 lúc 13:33

ko biết

tick nhé

Bình luận (0)
Mai Nhật Đoan Trang
19 tháng 10 2017 lúc 16:36

bi=B

Bình luận (0)
Phan Thị Minh Trí
Xem chi tiết
Bùi Thị Ánh Tuyết
27 tháng 1 2016 lúc 16:02

Đặt \(t=2-3x^2\)\(\Rightarrow\begin{cases}dt=-6xdx\\x^2=\frac{2-t}{3}\end{cases}\)\(\Leftrightarrow x^2\left(2-3x^2\right)^8=\left(\frac{2-t}{3}\right)t^8=\frac{1}{3}\left(2t^8-t^9\right)\)

Vậy : 

\(I=\int x^2\left(2-3x^2\right)^8dx=\frac{1}{3}\left(2\int t^8dt-\int t^9dt\right)=\frac{2}{27}t^9-\frac{1}{30}t^{10}+C\)

  \(=\frac{2}{27}\left(2-3x^2\right)^9-\frac{1}{30}\left(2-3x^2\right)^{10}+C\)

Bình luận (0)