Bài 3. TÍCH CỦA VECTO VỚI MỘT SỐ

Ngô Thành Chung
Ngô Thành Chung 14 tháng 1 lúc 22:02

Gọi độ dài AB = AC = BC = a 

\(\overrightarrow{OA}+4\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)

⇒ \(7\overrightarrow{OA}+4\overrightarrow{AB}+2\overrightarrow{AC}=\overrightarrow{0}\)

⇒ \(7\overrightarrow{OA}=4\overrightarrow{BA}+2\overrightarrow{CA}\)

\(\overrightarrow{OA}+4\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)

⇒ \(7\overrightarrow{OC}+4\overrightarrow{CB}+\overrightarrow{CA}=\overrightarrow{0}\)

⇒ \(7\overrightarrow{OC}=4\overrightarrow{BC}+\overrightarrow{AC}\)

Vậy \(\overrightarrow{OC}.\overrightarrow{OA}=\left(4\overrightarrow{BC}+\overrightarrow{AC}\right)\left(2\overrightarrow{BA}+\overrightarrow{2CA}\right)\)

⇒ \(\overrightarrow{OA}.\overrightarrow{OC}=\) 0 (bạn khai triển ra là được)

Vậy \(\widehat{AOC}=90^0\)

 

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 7 tháng 1 lúc 21:26

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+1;y+3\right)\\\overrightarrow{AB}=\left(1;-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+1\right)^2+\left(y+3\right)^2}\\AB=\sqrt{2}\end{matrix}\right.\)

Tam giác ABM vuông tại A và có diện tích 4

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}.\overrightarrow{AB}=0\\\dfrac{1}{2}AM.AB=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+1-\left(y+3\right)=0\\\sqrt{2\left(x+1\right)^2+2\left(y+3\right)^2}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\\left(x+1\right)^2+\left(y+3\right)^2=32\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2+\left(x-2+3\right)^2=32\)

\(\Leftrightarrow\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=1\\x=-5\Rightarrow y=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(3;1\right)\\M\left(-5;-7\right)\end{matrix}\right.\)

Bình luận (0)
Nelson Charles
Nelson Charles 7 tháng 1 lúc 20:49

@Nguyễn Việt Lâm

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 31 tháng 12 2020 lúc 16:04

Lời giải:

Ta có:

\(\overrightarrow{AB}=\overrightarrow{AM}+\overrightarrow{MB}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}=\overrightarrow{AM}-\overrightarrow{BN}+\overrightarrow{MN}\)

Vì $AM,BN$ là trung tuyến nên $M,N$ lần lượt là trung điểm của $BC, AC$

$\Rightarrow MN$ là đường trung bình của tam giác $ABC$ ứng với $AB$

\(\Rightarrow \overrightarrow{MN}=\frac{1}{2}\overrightarrow{BA}=-\frac{1}{2}\overrightarrow{AB}\). Do đó:

\(\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}-\frac{1}{2}\overrightarrow{AB}\Leftrightarrow \frac{3}{2}\overrightarrow{AB}=\overrightarrow{AM}-\overrightarrow{BN}\)

\(\Leftrightarrow \overrightarrow{AB}=\frac{2}{3}\overrightarrow{AM}-\frac{2}{3}\overrightarrow{BN}\)

Bình luận (0)
Akai Haruma
Akai Haruma Giáo viên 31 tháng 12 2020 lúc 16:09

Hình vẽ:undefined

Bình luận (0)
Nghĩa Dương
Nghĩa Dương 28 tháng 12 2020 lúc 21:29

dễ mà ,mình bỏ chữ vecto nha

IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND

=2IM+2IN+MA+MB+NC+ND

=0

Bình luận (1)
Loading...

Khoá học trên OLM của Đại học Sư phạm HN