Bài 2: Phương trình mặt phẳng

Thu Hoài
Xem chi tiết
Akai Haruma
1 tháng 4 2018 lúc 1:03

Lời giải:

Giả sử \(A=(a,0,0); B=(0,b,0); C=(0,0,c)\)

Phương trình mặt phẳng $(P)$ là:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (đây là dạng PTMP theo đoạn chắn rất quen thuộc)

Vì \(M\in (P)\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{1}{c}=1(*)\)

Ta có:

\(A=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Áp dụng BĐT Bunhiacopxky có:

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+2^2+1)\geq \left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow 6A\geq 1\Leftrightarrow A\geq \frac{1}{6}\). Điểm "min" xảy ra khi : \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}\)

Đặt \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}=t\Rightarrow \left\{\begin{matrix} a=\frac{1}{t}\\ b=\frac{1}{2t}\\ c=\frac{1}{t}\end{matrix}\right.\). Thay vào \((*)\Rightarrow t=\frac{1}{6}\)

Thay vào ptmp ban đầu suy ra ptmp (P) là:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow xt+2yt+zt=1\)

\(\Leftrightarrow \frac{x}{6}+\frac{y}{3}+\frac{z}{6}=1\) hay \(x+2y+z-6=0\)

Bình luận (0)
Nhó
1 tháng 4 2018 lúc 19:57

§2. Phương trình mặt phẳng

Bình luận (0)
Vuong Vuong
Xem chi tiết
Akai Haruma
22 tháng 2 2017 lúc 16:50

Lời giải:

\(A_1,A_2,A_3 \) là hình chiếu của \(A\) lên các mặt phẳng tọa độ nên :

\(\left\{\begin{matrix} A_1=(-1,2,0)\\ A_2=(-1,0,3)\\ A_3=(0,2,3)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \overrightarrow {A_1A_2}=(0,-2,3)\\ \overrightarrow {A_1A_3}=(1,0,3)\\ \end{matrix}\right.\)

Vector pháp tuyến của \((A_1A_2A_3):\overrightarrow{n_P}=[\overrightarrow {A_1A_2},\overrightarrow {A_1A_3}]=(-6,3,2)\)

Suy ra PTMP:

\(-6(x-0)+3(y-2)+2(z-3)=0\Leftrightarrow -6x+3y+2z-12=0\)

Bình luận (0)
Phan thu trang
Xem chi tiết
Akai Haruma
30 tháng 1 2017 lúc 23:44

Bài 1:

Gọi tọa độ của \(A=(0,0,a)\)\(B=(m,n,p)\)

Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)

Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)

Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)

Thay vào $(1)$ ta thu được $t=a$

\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)

Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$

Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)

Bình luận (0)
Akai Haruma
31 tháng 1 2017 lúc 1:12

Câu 2:

Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$

Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)

Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng

Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.

Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)

Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)

Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)

Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là

\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)

Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)

Tọa độ của $M$ là nghiệm của hệ

\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)

.

Bình luận (0)