Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Nguyễn Việt Lâm
Trung tá -
18 tháng 6 2020 lúc 23:39

Đường tròn tâm \(I\left(-1;3\right)\) \(\Rightarrow\overrightarrow{MI}=\left(1;2\right)\)

Theo tính chất đường tròn, do M là trung điểm AB \(\Rightarrow IM\perp AB\)

\(\Rightarrow d\perp IM\) \(\Rightarrow\) d nhận (1;2) là 1 vtpt

Phương trình d:

\(1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow x+2y=0\)

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
18 tháng 6 2020 lúc 22:38
Bình luận (0)
nguyen thi vang
18 tháng 6 2020 lúc 22:56

C A B H

\(AB=\sqrt{\left(3-2\right)^2+\left(-2+3\right)^2}=\sqrt{2}\)

Ta có : \(S_{\Delta ABC}=\frac{1}{2}CH.AB=\frac{3}{2}\)

=> \(CH=\frac{3}{\sqrt{2}}\)

* \(\overrightarrow{u_{AB}}=\left(1;1\right)\rightarrow\overrightarrow{n_{AB}}=\left(1;-1\right)\)

=> AB : \(\left(x-2\right)-\left(y+3\right)=0\) => \(x-y-5=0\)

* Vì G nằm trên đường thẳng 3x-y-8=0

=> \(G\left(a;3a-8\right)\)

=> \(C\left(3a-5;9a-19\right)\)

Lại có : \(d\left(C;AB\right)=CH\)

<=> \(\frac{\left|3a-5-\left(9a-19\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\frac{3}{\sqrt{2}}\)

=> | -6a+9| = 3

=> \(\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}C\left(-2;-10\right)\\C\left(1;-1\right)\end{matrix}\right.\)

Bình luận (0)
nguyen thi vang
18 tháng 6 2020 lúc 22:30

Gọi d là tiếp tuyến của đường tròn (C)

Vì d vuông góc với d': x+y+2019

=> d:\(x-y+c=0\)

Ta có tâm I(1;-3) và R =5

\(d_{\left(I;d\right)}=R\) <=> \(\frac{\left|1.1-3.\left(-1\right)+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=5\)

<=> \(\left|4+c\right|=5\sqrt{2}\)

=> \(\left[{}\begin{matrix}c=5\sqrt{2}-4\\c=-5\sqrt{2}-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}d:x-y+5\sqrt{2}-4=0\\d:x-y-5\sqrt{2}-4=0\end{matrix}\right.\)

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
18 tháng 6 2020 lúc 22:47

Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)

Các đường thẳng gọi hết là d cho dễ kí hiệu

b/ \(\overrightarrow{MI}=\left(2;-4\right)=2\left(1;-2\right)\)

d đi qua M và vuông góc IM nên nhận (1;-2) là 1 vtpt

Pt d: \(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

c/ Thay tọa độ N vào đường tròn thỏa mãn \(\Rightarrow N\in\left(C\right)\) \(\Rightarrow IN\perp d\)

\(\overrightarrow{IN}=\left(0;2\right)=2\left(0;1\right)\Rightarrow\) d nhận (0;1) là 1 vtpt và qua N

Pt d: \(0\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

d/ d song song d1 nên pt có dạng: \(5x+12y+c=0\) (với \(c\ne-2019\))

d tiếp xúc (C) nên \(d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|5.3-12.1+c\right|}{\sqrt{5^2+12^2}}=2\Leftrightarrow\left|c+3\right|=26\Rightarrow\left[{}\begin{matrix}c=23\\c=-29\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+23=0\\5x+12y-26=0\end{matrix}\right.\)

e/ Tiếp tuyến vuông góc d2 nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d có dạng: \(2x-y+c=0\)

d tiếp xúc (C) \(\Rightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|2.3-1.\left(-1\right)+c\right|}{\sqrt{2^2+1^2}}=2\Leftrightarrow\left|c+7\right|=2\sqrt{5}\Rightarrow\left[{}\begin{matrix}c=-7+2\sqrt{5}\\c=-7-2\sqrt{5}\end{matrix}\right.\)

Có 2 tt thỏa mãn: \(\left[{}\begin{matrix}2x-y-7+2\sqrt{5}=0\\2x-y-7-2\sqrt{5}=0\end{matrix}\right.\)

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
17 tháng 6 2020 lúc 22:16

Đường tròn tâm \(I\left(2;3\right)\) bán kính \(R=2\sqrt{2}\)

\(\overrightarrow{IA}=\left(1;-1\right)\Rightarrow AI=\sqrt{2}< R\Rightarrow\) A nằm phía trong đường tròn

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\)

\(MN=2MH=2\sqrt{R^2-IH^2}=2\sqrt{8-IH^2}\)

\(\Rightarrow MN_{min}\) khi \(IH_{max}\)

Trong tam giác vuông IAH vuông tại H, ta luôn có \(IH\le IA\)

\(\Rightarrow IH_{max}=IA\) khi H trùng A hay đường thẳng d vuông góc AI

\(\Rightarrow\) d qua A và nhận \(\overrightarrow{IA}=\left(1;-1\right)\) là 1 vtpt

Phương trình d: \(1\left(x-3\right)-1\left(y-2\right)=0\Leftrightarrow x-y-1=0\)

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
17 tháng 6 2020 lúc 19:44

Đường tròn (C) tâm \(I\left(-2;-1\right)\) bán kính \(R=1\)

\(\overrightarrow{IM}=\left(m+2;3-m\right)\Rightarrow IM^2=\left(m+2\right)^2+\left(3-m\right)^2=2m^2-2m+13\)

Giả sử A nằm ngoài đường tròn và 2 tiếp điểm là B và C

\(\Rightarrow\widehat{BAC}=60^0\Rightarrow\widehat{IAB}=30^0\)

\(\Rightarrow IM=\frac{IB}{sin30^0}=2IB=2R=2\Rightarrow IM^2=4\)

\(\Rightarrow2m^2-2m+13=4\Leftrightarrow2m^2-2m+9=0\) (vô nghiệm)

Ko tồn tại m thỏa mãn

Bạn xem lại đề, điểm M nằm quá xa đường tròn (M thuộc \(x+y-2=0\) ) nên góc chắc chắn là rất nhỏ

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
17 tháng 6 2020 lúc 19:53

Do hai đường thẳng d và d' song song

\(\Rightarrow\) Đường kính đường tròn (C) bằng khoảng cách giữa hai đường thẳng

\(2R=d\left(d;d'\right)=\frac{\left|-4-6\right|}{\sqrt{1^2+2^2}}=2\sqrt{5}\)

\(\Rightarrow R=\sqrt{5}\)

\(\Rightarrow S=\pi R^2=5\pi\)

Bình luận (0)
Nguyễn Việt Lâm
Trung tá -
16 tháng 6 2020 lúc 17:03

Phương trình (C): \(\left(x-3\right)^2+\left(y+1\right)^2=4\)

Đường tròn (C) tâm \(I\left(3;-1\right)\) bán kính \(R=2\)

\(\overrightarrow{AI}=\left(2;-4\right)\Rightarrow AI=2\sqrt{5}\)

Phương trình tiếp tuyến qua \(T_1\) có dạng:

\(\left(x-3\right)\left(x_{T1}-3\right)+\left(y+1\right)\left(y_{T1}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T1}-3\right)+4\left(y_{T1}+1\right)=4\Leftrightarrow x_{T1}-2y_{T1}-3=0\) (1)

Tiếp tuyến qua \(T_2\): \(\left(x-3\right)\left(x_{T2}-3\right)+\left(y+1\right)\left(y_{T2}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T2}-3\right)+4\left(y_{T2}+1\right)=4\Leftrightarrow x_{T2}-2y_{T2}-3=0\) (2)

Từ (1); (2) \(\Rightarrow T_1;T_2\) thuộc đường thẳng có pt: \(x-2y-3=0\)

Gọi H là trung điểm \(T_1T_2\Rightarrow\left\{{}\begin{matrix}IH\perp T_1T_2\\HT_1=HT_2\end{matrix}\right.\)

\(IH=d\left(I;T_1T_2\right)=\frac{\left|3-2\left(-1\right)-3\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{2}{\sqrt{5}}\)

\(\Rightarrow HT_1=\sqrt{R^2-IH^2}=\frac{3\sqrt{10}}{5}\Rightarrow T_1T_2=\frac{6\sqrt{10}}{5}\)

\(AH=AI-IH=\frac{8\sqrt{5}}{5}\)

\(S_{AT_1T_2}=\frac{1}{2}AH.T_1T_2=\frac{24\sqrt{2}}{5}\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN