Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

nguyen thi vang
nguyen thi vang 29 tháng 6 2020 lúc 12:19

Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 3 tháng 7 2020 lúc 12:46

Gọi \(M\left(x;y\right)\) là điểm cố định mà (C) đi qua

\(\Leftrightarrow x^2+y^2+\left(m+2\right)x-\left(m+4\right)y+m+1=0\) ;\(\forall m\)

\(\Leftrightarrow x^2+y^2+2x-4y+1+m\left(x-y+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\x-y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\y=x+1\end{matrix}\right.\)

\(\Rightarrow x^2+\left(x+1\right)^2+2x-4\left(x+1\right)+1=0\)

\(\Leftrightarrow2x^2-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=0\end{matrix}\right.\)

\(\Rightarrow\) (C) luôn đi qua 2 điểm cố định \(A\left(1;2\right);B\left(-1;0\right)\)

\(\Rightarrow\) Đường tròn luôn có dây cung cố định AB

\(\Rightarrow\) Để bán kính đường tròn là nhỏ nhất khi và chỉ khi AB là đường kính

\(\Leftrightarrow\) Tâm I là trung điểm AB \(\Rightarrow I\left(0;1\right)\)

\(\Rightarrow m=-2\)

Bình luận (0)
nguyen thi vang
nguyen thi vang 29 tháng 6 2020 lúc 12:25

Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 3 tháng 7 2020 lúc 12:53

Tâm \(I\left(m;-1\right)\) bán kính \(R=\sqrt{m^2-m-6}\) với \(\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

\(\Delta IAB\) đều \(\Leftrightarrow d\left(I;d\right)=\frac{R\sqrt{3}}{2}\)

\(\Leftrightarrow\frac{\left|m-1+1\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{3m^2-3m-18}}{2}\)

\(\Leftrightarrow\sqrt{2}\left|m\right|=\sqrt{3m^2-3m-18}\)

\(\Leftrightarrow2m^2=3m^2-3m-18\)

\(\Rightarrow m^2-3m-18=0\Rightarrow\left[{}\begin{matrix}m=6\\m=-3\end{matrix}\right.\)

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 3 tháng 7 2020 lúc 13:00

Đường tròn (C) tâm \(A\left(0;0\right)\) bán kính \(R=1\)

Đường tròn \(\left(C'\right)\) tâm \(B\left(m+1;-2m\right)\) bán kính \(r=\sqrt{5m^2+2m+6}\)

TH1: 2 đường tròn tiếp xúc ngoài

\(\Leftrightarrow AB=R+r'\)

\(\Rightarrow\sqrt{5m^2+2m+1}=1+\sqrt{5m^2+2m+6}\)

Đặt \(\sqrt{5m^2+2m+1}=t>0\)

\(\Rightarrow t=1+\sqrt{t^2+5}\)

\(\Leftrightarrow\sqrt{t^2+5}=t-1\left(t\ge1\right)\)

\(\Leftrightarrow t^2+5=t^2-2t+1\)

\(\Rightarrow t=-2\left(l\right)\)

TH2: 2 đường tròn tiếp xúc trong

\(\Rightarrow AB=r-R\)

\(\Leftrightarrow\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\)

Đặt \(\sqrt{5m^2+2m+1}=t>0\)

\(\Rightarrow t=\sqrt{t^2+5}-1\)

\(\Leftrightarrow t+1=\sqrt{t^2+5}\)

\(\Leftrightarrow t^2+2t+1=t^2+5\Rightarrow t=2\)

\(\Rightarrow\sqrt{5m^2+2m+1}=2\)

\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{3}{5}\end{matrix}\right.\)

Bình luận (0)
nguyen thi vang
nguyen thi vang 29 tháng 6 2020 lúc 12:32

(C) có tâm I(2;3), điểm A(3;2)

+Dây cung có độ dài lớn nhất trong đường tròn là đường kính

=> d qua tâm I(2;3) và A(3;2)

=> d nhận vecto nIA (1;1) là vtpt

=> d: x+y-5=0

Bình luận (0)
nguyen thi vang
nguyen thi vang 29 tháng 6 2020 lúc 12:34

Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Bình luận (0)
Nguyễn Việt Lâm
Nguyễn Việt Lâm Giáo viên 5 tháng 7 2020 lúc 9:32

Do \(A\left(a;b\right)\in d\Rightarrow3a-2b-1=0\)

\(\Leftrightarrow3a-2b=1\)

\(\Rightarrow1=\left(3a-2b\right)^2\le\left(9+4\right)\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2\ge\frac{1}{13}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3a-2b=1\\\frac{a}{3}=\frac{b}{-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{13}\\b=-\frac{2}{13}\end{matrix}\right.\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN