Tính giá trị biểu thức
A=3x(10x2-2x+1)-6x(5x2-x-2) với x=15
B=5x(x-4y)-4y(y-5x) với x=\(\dfrac{-1}{5}\);y=\(\dfrac{-1}{2}\)
Tính giá trị biểu thức
A=3x(10x2-2x+1)-6x(5x2-x-2) với x=15
B=5x(x-4y)-4y(y-5x) với x=\(\dfrac{-1}{5}\);y=\(\dfrac{-1}{2}\)
a) \(A=3x\left(10x^2-2x+1\right)-6x\left(5x^2-x-2\right)\)
\(=30x^3-6x^2+3x-30x^3+6x^2+12x\)
\(=15x\)
Thay \(x=15\) vào biểu thức A.
Ta có: \(15\cdot15=225\)
Vậy giá trị biểu thức A tại \(x=15\) là 225.
b) \(5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2\)
Thay \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) vào biểu thức B.
Ta có: \(5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2=-\dfrac{4}{5}\)
Vậy giá trị biểu thức B tại \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) là \(-\dfrac{4}{5}\)
(x2-x+3).(-2x2+3x+5)
\(\left(x^2-x+3\right)\left(-2x^2+3x+5\right)\)
\(=-2x^4+3x^3+5x^2+2x^3-3x^2-5x-6x^2+9x+15\)
\(=-2x^4+5x^3-4x^2+4x+15\)
(x+2)(x+3)-(x-2)(x+5)
$(x+2)(x+3)-(x-2)(x+5)$
$=(x^2+5x+6)-(x^2+3x-10)$
$=2x+16$
\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)\)
\(=x^2+3x+2x+6-\left(x^2+5x-2x-10\right)\)
\(=x^2+3x+2x+6-\left(x^2+3x-10\right)\)
\(=x^2+3x+2x+6-x^2-3x+10\)
\(=2x+16\)
\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)\)
= \(x^2+5x+6-\left(x^2+3x-10\right)\)
= \(x^2+5x+6-x^2-3x+10\)
= 2x + 16
= 2 ( x + 8)
(8x-3)(3x+2)-(4x+7)(x+4)+(2x+1)(1-5x)=-33
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)+\left(2x+1\right)\left(1-5x\right)=-33\)
\(pt\Leftrightarrow3x\left(8x-3\right)+2\left(8x-3\right)-\left(x\left(4x+7\right)+4\left(4x+7\right)\right)+\left(2x+1\right)-5x\left(2x+1\right)+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-\left(4x^2+7x+16x+28\right)+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow24x^2-9x+16x-6-4x^2-7x-16x-28+2x+1-10x^2-5x+33=0\)
\(\Leftrightarrow10x^2-19x=0\Leftrightarrow x\left(10x-19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Giải phương trình sau:
(y-z)2+(z-x)2+(x-y)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2
Phân tích vế trái ta được
2(x2 + y2 + z2 − (xy + yz + zx))2(x2 + y2 + z2 − (xy + yz + zx))
Phân tích vế phải ta được
6(x2 + y2 + z2 − (xy + yz + zx))6(x2 + y2 + z2 − (xy + yz + zx))
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0→x = y = z
Giải phương trình: \(\left(x+3\right)\left(3x^2+11x+9\right)+\left(x^2+3x+1\right)^2=0\)
\(2x^2-6x+1=0\)
\(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{7}{2}=0\)
\(\Leftrightarrow2\left(x-\dfrac{3}{2}\right)^2=\dfrac{7}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\sqrt{\dfrac{7}{4}}\\x-\dfrac{3}{2}=-\sqrt{\dfrac{7}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{7}{4}}+\dfrac{3}{2}\\x=-\sqrt{\dfrac{7}{4}}+\dfrac{3}{2}\end{matrix}\right.\)
\(3x^2+4x-4=0\)
\(3x^2+4x-4=0\)
\(3x^2+6x-2x-4=0\)
\(3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\left(x+2\right)\left(3x-2\right)=0\)
\(\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(3x^2+4x-4=0\)
\(\Leftrightarrow\)\(3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=2\end{matrix}\right.\)
Mọi người giúp mk câu này heng:
Giải phương trình
\(\left(x^2-1\right)\left(x^2+4x+3\right)=19^2\)
(x2 - 1) (x2 + 4x + 3) = 192
<=> (x + 1)(x - 1)(x + 3)(x + 1) = 192
<=>(x2 + 2x − 3)(x2 + 2x + 1) = 192 (*)
Đặt t = x2 + 2x + 1
(*) => (t − 4)t = 192
<=> t2 − 4t − 192 = 0
<=> (t + 12)(t − 16) = 0
<=> t + 12 = 0 hoặc t - 16 = 0
<=>t = -12 hoặc t = 16
=> x
Giải phương trình : \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{\left(x+3\right)}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\left(x+100\right).\left(\dfrac{1}{98}+\dfrac{1}{97}\right)=\left(x+100\right).\left(\dfrac{1}{96}+\dfrac{1}{95}\right)\)
\(\Rightarrow\dfrac{1}{98}+\dfrac{1}{97}=\dfrac{1}{96}+\dfrac{1}{95}\) (Vô lí)
Vậy PTVN