Bài 2: Liên hệ giữa thứ tự và phép nhân

Nhật Lương Thái
Xem chi tiết
Nguyễn Khánh Chi
11 tháng 3 2022 lúc 10:05

36 phút = 0,6h

Gọi thời gian để ô tô thứ 2 tới B là t ( t>0 )

Ta có hệ phương trình :

50t = 45t + 0,6.45

<=> 5t = 27

<=> t = 5,4 h

=> AB = 5,4.50 = 270 km

Bình luận (1)
Keiko Hashitou
9 tháng 3 2022 lúc 16:04

lỗi

Bình luận (0)
Minh Anh sô - cô - la lư...
9 tháng 3 2022 lúc 16:05

lỗi

Bình luận (0)
Nguyễn Quang Minh
9 tháng 3 2022 lúc 16:11

d

Bình luận (0)
Trần Đức Huy
9 tháng 2 2022 lúc 17:30

Ta có \(\left(a-b\right)^2\ge0\)

=>\(a^2-2ab+b^2\ge0\)

=>\(a^2+b^2\ge2ab\)

=>\(\dfrac{a^2+b^2}{ab}\ge2\)

=>\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Bình luận (0)
Kudo Shinichi
9 tháng 2 2022 lúc 17:31

undefined

Bình luận (0)
Tạ Uyên
Xem chi tiết
Mooner
6 tháng 11 2021 lúc 20:38

tự tính :>

Bình luận (2)
Yonex arc saber 6
12 tháng 2 lúc 17:26

`\color{cyan}{Màu}`

Bình luận (0)
Tạ Uyên
Xem chi tiết
Dũng Ko Quen
Xem chi tiết
Akai Haruma
16 tháng 4 2021 lúc 22:45

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Bình luận (0)
Akai Haruma
16 tháng 4 2021 lúc 22:49

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

Bình luận (0)
ariesgirl
7 tháng 12 2021 lúc 22:24

bạn cx z luôn nha Akai Haruma

Bình luận (0)
 Khách vãng lai đã xóa
Dũng Ko Quen
Xem chi tiết
Akai Haruma
16 tháng 4 2021 lúc 21:03

Lời giải: 

Áp dụng BĐT Bunhiacopxky:

$[(x+\frac{1}{x})^2+(y+\frac{1}{y})^2](1+1)\geq (x+\frac{1}{x}+y+\frac{1}{y})^2$

$\Leftrightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(x+y+\frac{1}{x}+\frac{1}{y})^2=\frac{1}{2}(1+\frac{1}{xy})^2$

Mà: 
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$ theo BĐT Cô-si

$\Rightarrow (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{1}{2}(1+\frac{1}{\frac{1}{4}})^2=\frac{25}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$ 

Bình luận (0)
Akai Haruma
16 tháng 4 2021 lúc 21:07

** Lần sau bạn lưu ý ghi đề bài đầy đủ.

Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$

----------------------------

Ta có:

BĐT cần cm tương đương với:

$x^2+y^2+z^2-xy-yz-xz\geq 0$

$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$

(luôn đúng với mọi số thực $x,y,z$)

Do đó ta có đpcm

Dấu "=" xảy ra khi $x=y=z$

Bình luận (1)