Bài 2: Giới hạn của hàm số

Trần Ái Linh
2 tháng 6 lúc 11:29

Không nkaaa. Vì \(\lim\limits_{x→0^-}f\left(x\right)\ne\lim\limits_{x→0^{+_{ }}}f\left(x\right)\) nên không tồn tại \(\lim\limits_{x→0}f\left(x\right)\).

Bình luận (3)
Yeutoanhoc
2 tháng 6 lúc 10:10

`lim_{x->-1}(x^2+3x+2)/(x+1)`
`=lim_{x->-1}((x+1)(x+2))/(x+1)`
`=lim_{x->-1}(x+2)`
`=1`

Bình luận (0)
hhy.
18 tháng 5 lúc 2:07

undefined

Bình luận (0)
Thuy Tram
13 tháng 5 lúc 14:35

giải giúp mình bài 2 thôi ạ

Bình luận (0)
Thuy Tram
13 tháng 5 lúc 14:42

dạ thôi mình ko cần nữa ạ. Cảm ơn pạn nào có ý định giúp mik nhe

Bình luận (0)
Khánh Đan
12 tháng 4 lúc 20:01

undefined

Bình luận (0)
Nguyễn Việt Lâm
9 tháng 4 lúc 5:09

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x-1-\sqrt{4x-3}\right)+\left(\sqrt[3]{6x-5}-\left(2x-1\right)\right)}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{4\left(x-1\right)^2}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(x-1\right)^2\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{4}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}\right)=-2\)

Bình luận (0)
Nguyễn Văn Hoàng
9 tháng 4 lúc 1:27

\(lim\left(x->1\right)\dfrac{-\sqrt{4x-3}+\sqrt[3]{6x-5}}{\left(x-1\right)^2}\)

Đặt \(\sqrt{4x-3}=f\left(x\right);\sqrt[3]{6x-5}=g\left(x\right)\Rightarrow g\left(x\right)^6-f\left(x\right)^6=4\left(x-1\right)^2\left(16x-13\right)\)

\(f\left(1\right)=1;g\left(1\right)=1\)

Ta có 

\(lim\left(x->1\right)\dfrac{-f\left(x\right)+g\left(x\right)}{\left(x-1\right)^2}=lim\left(x->1\right)\dfrac{g\left(x\right)^6-f\left(x\right)^6}{\left(x-1\right)^2}\cdot\dfrac{1}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=lim\left(x->1\right)\dfrac{4\left(16x-3\right)}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=\dfrac{4\left(16-3\right)}{1^5+1^4\cdot1+1^3\cdot1^2+1^2\cdot1^3+1\cdot1^4+1^5}=\dfrac{26}{3}\)

Bình luận (0)
hhy.
7 tháng 4 lúc 17:29

Ok sau đây là 3 cách, mà mình thấy c3 chả được xài cách nào :( Cơ mà thoi kệ

undefined

Cách 3: 

undefined

P/s: Hmm, thực ra thì ban đầu mình cũng nghĩ là sử dụng ngắt VCB tương đương k được đâu, bởi nó chỉ sử dụng cho tích và thương, cơ mà nó áp dụng cho tổng và hiệu khi mà 2 hạng tử mình biến đổi ra ko tương đương nhau, vậy nên cách 1 vẫn được chấp nhận nhé. Mình sẽ dele 2 câu trả lời kia để gộp 3 cách làm 1 câu trl cho tiện.

Bình luận (0)
Pham Tien Dat
4 tháng 4 lúc 15:13

dùng cái gõ công thức đi bạn, đọc khó hiểu quá

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 3 lúc 23:09

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

Bình luận (0)
Pham Tien Dat
23 tháng 3 lúc 21:59

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4+\dfrac{1}{x^2}}-\sqrt{\dfrac{1}{x}+\dfrac{5}{x^2}}}{2-\dfrac{7}{x}}=1\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN