a/ \(F=\frac{k\left|q_1q_2\right|}{r^2}=\frac{9.10^9.\left|6.10^{-8}.2.10^{-8}\right|}{0,1^2}=...\left(N\right)\)
b/ \(AN^2+BN^2=AB^2\Rightarrow\cos\left(\widehat{ANB}\right)=\cos90^0=0\)
\(\Rightarrow\overrightarrow{F_3}=\overrightarrow{F_{13}}+\overrightarrow{F_{23}}\Leftrightarrow F_3=\sqrt{F_{13}^2+F_{23}^2}=\sqrt{\left(\frac{kq_1q_3}{r_{AN}^2}\right)^2+\left(\frac{kq_2q_3}{r_{BN}^2}\right)^2}=...\left(N\right)\)
c/Vì q1q2>0 => M nằm giữa AB
\(\overrightarrow{E_{BM}}\uparrow\downarrow\overrightarrow{E_{AM}}\)
\(\Rightarrow\overrightarrow{E_M}=\overrightarrow{E_{AM}}+\overrightarrow{E_{BM}}\Rightarrow E_M=|\frac{kq_1}{r_{AM}^2}-\frac{kq_2}{r_{BM}^2}|\)
\(\Leftrightarrow0=|\frac{kq_1}{\left(AB-r_{BM}\right)^2}-\frac{kq_2}{r_{BM}^2}|\Rightarrow r_{BM}=...\left(m\right)\)
d/\(\overrightarrow{E_{AC}}\uparrow\uparrow\overrightarrow{E_{BC}}\)
\(\Rightarrow E_C=E_{AC}+E_{BC}=\frac{kq_1}{AC^2}+\frac{kq_2}{BC^2}=....\left(V/m\right)\)