\(\overrightarrow{MN}=k\overrightarrow{PQ}\)\(\Rightarrow\)MN song song với PQ
\(\overrightarrow{MN}=k\overrightarrow{PQ}\)\(\Rightarrow\)MN song song với PQ
Cho \(\overrightarrow{a}\)và \(\overrightarrow{b}\)không cùng phương thảo mãn \(m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{0}\)Chứng minh rằng \(\begin{cases}m=0\\n=0\end{cases}\)
Cho tứ giác ABCD . Ta gọi G là trọng tâm tứ giác ABCD khi và chỉ khi \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\) . Xác định vị trí G đó
CÁC BẠN GIÚP MÌNH VỚI, MÌNH GỬI CÂU HỎI MÀ KHÔNG AI TRẢ LỜI!!!
Cho \(\Delta ABC\) có \(I\) là tâm đường tròn nội tiếp
CMR: \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
Trong đó \(a,b,c\) là độ dài các cạnh \(\Delta ABC\) (cạnh đối diện \(\widehat{A}\) là cạnh \(a\) ...)
Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)
\(\Rightarrow I\in AA'\) và
\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)
Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC
=> Điều đó đúng với giả thiết.
Vậy ta có đpcm
cho mình hỏi cái. cho 2 điểm phân biệt A,B tìm tập hợp điểm M sao cho. Câu a) vecto MA - vecto MB bằng vecto BA Câu b) vecto MA - vecto MB bằng vecto AB . GIÚP MÌNH NHA
a,MA-MB=BA
MA+AB=MB
MB=MB (Luôn đúng)
b,MA-MB=AB
MA+BM=AB
BA=AB?????
Cho \(\Delta\) ABC có trọng tâm G . H là điểm đối xứng của B qua G .
a; cm : \(\overrightarrow{AH}\)= \(\frac{2}{3}\overrightarrow{AC}\) - \(\frac{1}{3}\overrightarrow{AB}\)
b:; \(\overrightarrow{CH}\)= \(-\frac{1}{3}\) (\(\overrightarrow{AC}\) + \(\overrightarrow{AB}\) )
c; M là trung điểm BC , cm: \(\overrightarrow{MH}\) = \(\frac{1}{6}\overrightarrow{AC}\) - \(\frac{5}{3}\overrightarrow{AC}\)
Cho tam giác ABC trên các đường thẳng BC AC AB lan luot lay cac diem M N P sao \(\overrightarrow{MB}=\overrightarrow{3MC}\)
\(\overrightarrow{NA}=\overrightarrow{3CN}\) , \(\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{0}\)
Cm \(\overrightarrow{PM},\overrightarrow{PN}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
Cm 3 điểm M N P thẳng hàng
Cho hbh ABCD Trên BC lấy điểm H, trên BD lấy điểm k sao cho \(\overrightarrow{BH}=\frac{1}{5}\overrightarrow{BC},\overrightarrow{BK}=\frac{1}{6}\overrightarrow{BD}\)
Cm A K H thẳng hàng
Cho M, N,I là trung điểm AB,CD,MN
Chứng minh: 1) \(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
2)\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
3)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=4\overrightarrow{OI}\forall O\)
4) \(\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{0}\)
5) \(\overrightarrow{AD}-\overrightarrow{CD}\Leftrightarrow M\equiv N\)
6) \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
2: \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=2\cdot\left(\overrightarrow{IM}+\overrightarrow{IN}\right)=\overrightarrow{0}\)
3: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=2\cdot\left(\overrightarrow{OM}+\overrightarrow{ON}\right)\)
\(=4\cdot\overrightarrow{OI}\)
4: \(\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{NA}+\overrightarrow{NB}\)
\(=2\cdot\overrightarrow{MN}+2\cdot\overrightarrow{NM}=\overrightarrow{0}\)
Cho M,N,I là trung điểm của AB,CD,MN
CHỨNG MINH: 1) vecto MN = 1/2 ( vecto AC + vecto BD) = 1/2 (vecto AD + vecto BC)
2) vecto AD + vecto BD + vecto AC + vecto BC = 4 vecto MN