§1. Bất đẳng thức

Lưu Thị Thảo Ly
Xem chi tiết
Hung nguyen
25 tháng 8 2017 lúc 15:48

Gọi cái thiệt gớm đó là P

Ta có:

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64y}+\dfrac{1+y}{64x}\ge3\sqrt[3]{\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}.\dfrac{1+x}{64y}.\dfrac{1+y}{64x}}=\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{64x}-\dfrac{1}{64y}-\dfrac{1}{32}\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{64y}-\dfrac{1}{64z}-\dfrac{1}{32}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{64z}-\dfrac{1}{64x}-\dfrac{1}{32}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta được

\(P\ge\dfrac{3}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Bình luận (1)
Hung nguyen
26 tháng 8 2017 lúc 8:49

Đặt cái ban đầu là P

Ta có: \(xy+yz+zx=xyz\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Ta lại có:

\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)

\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)

\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)

Dấu = xảy ra khi \(x=y=z=3\)

Bình luận (0)
Tịnh Nhiên
Xem chi tiết
Unruly Kid
13 tháng 8 2017 lúc 6:38

2) Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó, ta có: \(a^2+bc\le a^2+ac\le\left(a+c\right)^2\)

Vậy chỉ cần chứng minh

\(\left(a+b\right)^2\left(b+c\right)^2\ge4\left(b^2+ca\right)\left(c^2+ab\right)\)

Lợi dụng AM-GM ngay, ta được

\(4\left(b^2+ca\right)\left(c^2+ab\right)\le\left(b^2+ca+c^2+ab\right)^2=\left(b^2+ab+bc+ca+c^2-bc\right)^2=\left[\left(b+a\right)\left(b+c\right)+c\left(c-b\right)^2\right]\le\left(b+a\right)^2\left(b+c\right)^2\)

Đẳng thức xảy ra khi a=b;c=0 và hoán vị

Bình luận (2)
Unruly Kid
13 tháng 8 2017 lúc 6:43

3) \(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Lợi dụng AM-GM, ta được

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)

Tương tự với các BĐT tiếp theo

Cộng vế theo vế rồi rút gọn ta được đpcm

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
Hung nguyen
13 tháng 8 2017 lúc 6:48

Câu 1/

Không mất tính tổng quát ta giả sử \(a\le c\le b\) (đừng hỏi tại sao chọn c là số ở giữa. Thích thì mình chọn thôi).

\(\Rightarrow\left(a-c\right)\left(b-c\right)\le0\)

Ta có:\(\left(b+c\right)^2\left(c+a\right)^2=\left(c^2+ab+bc+ca\right)^2\)

\(\ge4\left(c^2+ab\right)\left(bc+ca\right)\)

\(\Rightarrow4=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4c\left(a+b\right)^2\left(c^2+ab\right)\left(bc+ca\right)\)

\(\Leftrightarrow c\left(a+b\right)^3\left(c^2+ab\right)\le1\)

Ta cần chứng minh:

\(\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\le c\left(a+b\right)^3\left(c^2+ab\right)\)

\(\Leftrightarrow ab\left[\left(a-c\right)\left(b-c\right)-2ac-2bc\right]\le0\) (đúng)

Vậy ta có ĐPCM

Bình luận (0)
michelle holder
Xem chi tiết
Lightning Farron
5 tháng 8 2017 lúc 7:34

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\cdot VT\ge\left(1+1+1\right)^2\)

Lại có BĐT \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Rightarrow\sqrt{a^2+b^2}\ge\sqrt{\dfrac{\left(a+b\right)^2}{2}}=\dfrac{a+b}{\sqrt{2}}\)

Tương tự cũng có: \(\sqrt{b^2+c^2}\ge\dfrac{b+c}{\sqrt{2}};\sqrt{c^2+a^2}\ge\dfrac{c+a}{\sqrt{2}}\)

\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\dfrac{2\left(a+b+c\right)}{\sqrt{2}}\)

\(\ge\dfrac{2\cdot\sqrt{3\left(ab+bc+ca\right)}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}\)

\(\Rightarrow VT\ge\dfrac{\left(1+1+1\right)^2}{\dfrac{2\sqrt{3}}{\sqrt{2}}}=\dfrac{3\sqrt{6}}{2}\)

Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
Lightning Farron
8 tháng 8 2017 lúc 13:15

Bữa trước ko để ý a,b,c ko âm với ngược dấu sai thê thảm =))

Dự đoán \(a=b=1\)\(c=0\) thì tính được \(2+\frac{1}{\sqrt2}\)

Ta sẽ chứng minh nó là GTNN.Thật vậy cần chứng minh

\(\sqrt{\dfrac{ab+bc+ca}{a^2+b^2}}+\sqrt{\dfrac{ab+bc+ca}{b^2+c^2}}+\sqrt{\dfrac{ab+bc+ca}{a^2+c^2}}\ge2+\dfrac{1}{\sqrt{2}}\)

Khôn mất tính tổng quá giả sử \(c=\min\{a,b,c\}\). Khi đó:

\(\dfrac{ab+ac+bc}{a^2+b^2}-\dfrac{(a+c)(b+c)}{(a+c)^2+(b+c)^2}=\dfrac{c(a+b+2c)(2ab+ac+bc)}{a^2+b^2)((a+c)^2+(b+c)^2}\ge0\)

Tương tự cũng có:

\(\dfrac{ab+ac+bc}{a^2+c^2}-\dfrac{b+c}{a+c}=\dfrac{c(2ab+ac-c^2)}{(a+c)(a^2+c^2)}\ge0\)

\(\dfrac{ab+ac+bc}{b^2+c^2}-\dfrac{a+c}{b+c}=\dfrac{c(2ab+bc-c^2)}{(b+c)(b^2+c^2)}\ge0\)

Đặt \(\dfrac{a+c}{b+c}=x^2;\dfrac{b+c}{a+c}=y^2\left(x,y>0\right)\)\(\Rightarrow xy=1\) và ta có:

\(x+y+\dfrac{1}{\sqrt{x^2+y^2}}\ge2+\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x+y-2\sqrt{xy}\ge\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{x^2+y^2}}\)

\(\Leftrightarrow(\sqrt{x}-\sqrt{y})^2\ge\dfrac{(x-y)^2}{\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})}\)

\(\Leftrightarrow\sqrt{2(x^2+y^2)}(\sqrt{x^2+y^2}+\sqrt{2})\ge(\sqrt{x}+\sqrt{y})^2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{2(x^2+y^2)}=\sqrt{(1^2+1^2)(x^2+y^2)}\ge x+y\)

\(=\dfrac{1}{2}(1^2+1^2)((\sqrt{x})^2+(\sqrt{y})^2)\ge\dfrac{1}{2}(\sqrt{x}+\sqrt{y})^2\)

Vậy cần chứng minh \(\sqrt{x^2+y^2}+\sqrt{2}\ge2\)

Đúng theo AM-GM:\(\sqrt{x^2+y^2}+\sqrt{2}\ge\sqrt{2xy}+\sqrt{2}=2\sqrt{2}>2\)

Bình luận (1)
michelle holder
Xem chi tiết
Neet
29 tháng 7 2017 lúc 14:06

It's really.. can be solved ?

Bình luận (0)
Hung nguyen
4 tháng 8 2017 lúc 9:17

Bác kiếm bài này ở đâu thế.

Bình luận (2)
Phan Đình Trường
Xem chi tiết
Neet
22 tháng 6 2017 lúc 14:46

Áp dụng BĐT cauchy:

\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)

\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:

\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

\(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
Trần Hoàng Việt
11 tháng 8 2018 lúc 20:19

cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt

Bình luận (0)
Phan Đình Trường
Xem chi tiết
soyeon_Tiểubàng giải
21 tháng 6 2017 lúc 19:14

a + 5 = 7c => 5 = 7c - a

Thay vào a3 + 5a2 + 21 = 7b ta được:

a3 + (7c - a).a2 + 21 = 7b

=> a3 + 7c.a2 - a3 + 21 = 7b

=> 7c.a2 + 21 = 7b

=> 7b - 7c.a2 = 21 (1)

=> 7c.(7b-c - a2) = 21 (*)

Từ (1) => 7b > 7c.a2 => b > c => 7b-c nguyên mà a2 nguyên nên 7b-c - a2 nguyên

Kết hợp với (*) => 21 chia hết cho 7c

\(7^c\ge7\) do c nguyên dương nên 7c = 7 => c = 1

Thay vào a + 5 = 7c ta được: a + 5 = 71 => a = 2

Thay c = 1; a = 2 vào (*) ta được: 71.(7b-1 - 22) = 21

=> 7b-1 - 4 = 3

=> 7b-1 = 7 => b - 1 = 1 => b = 2

Vậy a = b = 2; c = 1

Bình luận (2)
Bùi Lê Trung Kiên
Xem chi tiết
Lightning Farron
21 tháng 1 2017 lúc 20:51

Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:

\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)

Chứng minh tương tự, cộng lại ta có đpcm.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (4)
Lightning Farron
21 tháng 1 2017 lúc 20:43

bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm

Bình luận (0)
Đức Huy ABC
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 23:55

Lời giải:

Ta có:

\(\frac{a}{a+bc}=\frac{a}{a(a+b+c)+bc}=\frac{a}{(a+b)(a+c)}\)

Thực hiện tương tự với các phân thức còn lại thu được:

\(\text{VT}=\frac{a(b+c)+b(a+c)+c(a+b)}{(a+b)(b+c)(c+a)}=\frac{2(ab+bc+ac)}{(a+b)(b+c)(c+a)}\) \((1)\)

Ta để ý bổ đề sau:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Chứng minh:

\(\prod(a+b)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\text{VP}\)

Áp dụng vào bài toán:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(ab+bc+ac)\) \((2)\)

Từ \((1),(2)\Rightarrow \text{VT}\leq \frac{9}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
Phạm Thúy Vy
Xem chi tiết
Kuro Kazuya
13 tháng 4 2017 lúc 13:57

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

\(M=\dfrac{x+12-15}{x}+\dfrac{y+12-15}{y}+\dfrac{z+12-15}{z}\)

\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)

\(M=1-\dfrac{3}{x}+1-\dfrac{3}{y}+1-\dfrac{3}{z}\)

\(M=3-\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)\)

\(M=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}=\dfrac{3}{4}\)

\(\Rightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{9}{4}\)

\(\Rightarrow3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\le\dfrac{3}{4}\)

\(\Leftrightarrow M\le\dfrac{3}{4}\)

Vậy \(M_{max}=\dfrac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z=4\)

Bài 2

\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

Xét \(\dfrac{a^3+b^3+c^3}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{4abc}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}+\dfrac{3}{4}\)

\(=\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)-9\left(ab+bc+ca\right)}{4\left(ab+bc+ca\right)}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{9}{4}+\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+\dfrac{3}{4}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{4abc}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}-\dfrac{3}{2}\) (1)

Xét \(\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{1}{30}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\) (2)

Cộng (1) và (2) theo từng vế

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{225\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge2\sqrt{\dfrac{1}{225}}\)

\(\Rightarrow\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\ge\dfrac{2}{15}\)

\(P\ge\dfrac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}+\dfrac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\dfrac{22}{15}\ge\dfrac{2}{15}-\dfrac{22}{15}=-\dfrac{4}{3}\)

\(\Leftrightarrow P\ge-\dfrac{4}{3}\)

Vậy \(P_{min}=\dfrac{-4}{3}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (2)
Phạm Thúy Vy
13 tháng 4 2017 lúc 11:28

Bài 1

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

Bình luận (0)
Phạm Thúy Vy
13 tháng 4 2017 lúc 11:30

Bài 2:

\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

Bình luận (0)
do van tu
Xem chi tiết
Akai Haruma
31 tháng 1 2017 lúc 20:46

Lời giải:

Chứng minh \(xy+yz+xz-2xyz\leq \frac{7}{27}\)

Theo BDDT Schur ta có \(xyz\geq (x+y-z)(z+x-y)(y+z-x)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

Do đó \(A=xy+yz+xz-xyz\leq xy+yz+xz-\frac{8}{9}(xy+yz+xz)+\frac{2}{9}=\frac{xy+yz+zx}{9}+\frac{2}{9}\)

Theo AM-GM dễ thấy \(1=(xy+yz+xz)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow A\leq \frac{7}{27}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

Chứng minh \(xy+yz+xz-2xyz\geq 0\)

Do $x,y,z\geq 0$ nên

\(A=xy(1-z)+yz(1-x)+xz=xy(x+y)+yz(y+z)+xz\geq 0\)

Dấu bẳng xảy ra khi \((x,y,z)=(0,0,1)\) và các hoán vị của nó

Bình luận (7)