§1. Bất đẳng thức

Nguyễn Trần Hạnh Nguyên
Xem chi tiết
Akai Haruma
16 tháng 2 2021 lúc 1:35

Lời giải:Bổ sung ĐK: $a,b,c\geq 1$

Trước tiên ta sẽ bổ đề sau: Với $X,Y\geq 1$ thì:

$\sqrt{X-1}+\sqrt{Y-1}\leq \sqrt{XY}$

BĐT này có thể chứng minh dễ dàng bằng cách bình phương và biến đổi tương đương.

------------

Áp dụng BĐT trên vô bài toán ta có:

$\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\leq \sqrt{ab}+\sqrt{c-1}$

$=\sqrt{(ab+1)-1}+\sqrt{c-1}\leq \sqrt{c(ab+1)}$

Ta có đpcm.

Bình luận (0)
Eren
Xem chi tiết
Akai Haruma
29 tháng 9 2017 lúc 0:50

Lời giải:

Áp dụng hệ quả của BĐT AM-GM:

\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)

\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)

\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)

Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:

Áp dụng BĐT AM-GM:

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)

Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)

\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Huy Thắng
28 tháng 9 2017 lúc 1:45

ap dung bdt holder

Bình luận (1)
Lông_Xg
Xem chi tiết
Akai Haruma
8 tháng 6 2018 lúc 7:49

Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:

\((a^2+2c^2)(1+2)\geq (a+2c)^2\)

\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)

Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)

Cộng theo vế các BĐT trên thu được:

\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=3$

Bình luận (0)
Akai Haruma
8 tháng 6 2018 lúc 8:06

Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.

Áp dụng BĐT AM-GM ta có:

\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)

\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)

\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)

Cộng theo vế:

\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)

\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)

Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)

Bình luận (0)
Dương Nhật Hoàng
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 1:57

Lời giải:

Ta sẽ CM BĐT trung gian sau:

\(P\geq \frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Leftrightarrow x^2\left ( \frac{1}{y+z}-\frac{1}{x+y} \right )+y^2\left ( \frac{1}{x+z}-\frac{1}{z+y} \right )+z^2\left ( \frac{1}{x+y}-\frac{1}{z+x} \right )\geq 0\)

\(\Leftrightarrow x^2(x^2-z^2)+y^2(y^2-x^2)+z^2(z^2-y^2)\geq 0\)

\(\Leftrightarrow (x^2-y^2)^2+(y^2-z^2)^2+(z^2-x^2)^2\geq 0\) (luôn đúng)

Giờ ta sẽ tìm min \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Hiển nhiên \(\sum \frac{x^2}{x+y}=\sum \frac{y^2}{x+y}\) nên

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)=A\)

Áp dụng BĐT Cauchy-Schwarz:

\(A\geq \frac{1}{2}\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x+y+z)}=\frac{9}{x+y+z}\)

Áp dụng BĐT Cauchy: \(\sqrt{x^2+y^2}\geq \frac{x+y}{\sqrt{2}}\)

Tương tự với các số còn lại suy ra \(6\geq \sqrt{2}.(x+y+z)\Rightarrow x+y+z\leq 3\sqrt{2}\)

\(\Rightarrow A\geq \frac{3\sqrt{2}}{2}\) kéo theo \(P_{\min}=\frac{3\sqrt{2}}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\sqrt{2}\)

Bình luận (0)
Lightning Farron
Xem chi tiết
Neet
25 tháng 5 2018 lúc 19:42

\(\left(a^3+b^3+c^3\right)\left[\dfrac{3}{8}.\left(a+b\right)\left(b+c\right)\left(c+a\right)\right].\left[\dfrac{3}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]..\)

\(\le\dfrac{1}{9^9}\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^9\)

\(=\dfrac{1}{9^9}\left(a+b+c\right)^{27}\)

\(\Leftrightarrow3^8.\left(a^3+b^3+c^3\right)\le\dfrac{1}{3^{18}}\left(a+b+c\right)^{27}\)

\(\Leftrightarrow\sqrt[27]{\dfrac{a^3+b^3+c^3}{3}}\le\dfrac{a+b+c}{3}\)

P/s: Eztogiveup

Bình luận (2)
phạm thảo
Xem chi tiết
Kuro Kazuya
17 tháng 5 2018 lúc 18:23

Bài 1

\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c\)

Bình luận (0)
Kuro Kazuya
17 tháng 5 2018 lúc 18:48

Bài 2

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dụng bđt Bunhiacopxki ta có

\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Áp dụng bđt Cauchy dạng phân thức ta có

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)

\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c\)

Bình luận (1)
Nguyễn Thanh Thủy
Xem chi tiết
Akai Haruma
16 tháng 5 2018 lúc 19:03

Lời giải:

Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\\ a=\frac{x+z}{2}\end{matrix}\right.\) \((x,y,z>0\) do $a,b,c$ là ba cạnh tam giác ).

BĐT cần chứng minh tương đương với :

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Áp dụng BĐT Cauchy:

\(\frac{1}{x^2}+\frac{1}{y^2}\geq \frac{2}{xy}\)

\(\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \left(\frac{1}{x}+\frac{1}{y}\right)^2\)

Theo BĐT S.Vacso: \(\frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \frac{16}{(x+y)^2}(*)\)

Hoàn toàn tương tự:

\(2\left(\frac{1}{y^2}+\frac{1}{z^2}\right)\geq \frac{16}{(y+z)^2}; 2\left(\frac{1}{z^2}+\frac{1}{x^2}\right)\geq \frac{16}{(z+x)^2}(**)\)

Cộng theo vế \((*); (**)\) và rút gọn suy ra:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z$ hay $a=b=c$

Bình luận (0)
phạm thảo
Xem chi tiết
Akai Haruma
14 tháng 5 2018 lúc 19:15

Lời giải:

Áp dụng BĐT Cauchy ta có:

\(\frac{a^4}{b^3(c+a)}+\frac{c+a}{4a}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8b^3}}=\frac{3a}{2b}\)

\(\frac{b^4}{c^3(a+b)}+\frac{a+b}{4b}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8c^3}}=\frac{3b}{2c}\)

\(\frac{c^4}{a^3(b+c)}+\frac{b+c}{4c}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8a^3}}=\frac{3c}{2a}\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}+\frac{1}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})+\frac{9}{4}\geq \frac{3}{2}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})\)

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})-\frac{9}{4}\geq \frac{5}{4}.3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-\frac{9}{4}\)

hay \( \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
Akai Haruma
14 tháng 5 2018 lúc 19:21

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{a^2}{b})^2}{b(c+a)}+\frac{(\frac{b^2}{c})^2}{c(a+b)}+\frac{(\frac{c^2}{a})^2}{a(b+c)}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{b(c+a)+c(a+b)+a(b+c)}\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)

\(\Rightarrow \left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2\geq (a+b+c)^2\)

Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

Suy ra: \(\text{VT}\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}\) (đpcm)

Bình luận (0)
Mai Mai
Xem chi tiết
Akai Haruma
23 tháng 4 2018 lúc 23:55

Lời giải:

Với điều kiện đã cho thì hiển nhiên mẫu dương.

Áp dụng BĐT Cauchy-Schwarz ta có:

\(M=\frac{a^2}{2a\sqrt{b}-3a}+\frac{b^2}{2b\sqrt{c}-3b}+\frac{c^2}{2c\sqrt{a}-3c}\)\(\geq \frac{(a+b+c)^2}{2(a\sqrt{b}+b\sqrt{c}+c\sqrt{a})-3(a+b+c)}\)

Áp dụng BĐT Bunhiacopxky kết hợp BĐT AM-GM:

\((a\sqrt{b}+b\sqrt{c}+c\sqrt{a})^2\leq (a+b+c)(ab+bc+ac)\)

\(\leq (a+b+c).\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^3}{3}\)

\(\Rightarrow a\sqrt{b}+b\sqrt{c}+c\sqrt{a}\leq \sqrt{\frac{(a+b+c)^3}{3}}\)

\(\Rightarrow M\geq \frac{(a+b+c)^2}{2\sqrt{\frac{(a+b+c)^3}{3}}-3(a+b+c)}\)

Đặt \(\sqrt{\frac{a+b+c}{3}}=t(t>\frac{3}{2})\)\(\Rightarrow a+b+c=3t^2\)

Ta có:

\(P\geq\frac{9t^4}{6t^3-9t^2}=\frac{3t^2}{2t-3}\)

\(\Leftrightarrow P\geq \frac{\frac{3}{4}(2t-3)(2t+3)}{2t-3}+\frac{27}{4(2t-3)}\)

\(\Leftrightarrow P\geq \frac{3}{4}(2t+3)+\frac{27}{4(2t-3)}=\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}+\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{3}{4}(2t-3)+\frac{27}{4(2t-3)}\geq 2\sqrt{\frac{3}{4}.\frac{27}{4}}=\frac{9}{2}\)

\(\Rightarrow P\geq \frac{9}{2}+\frac{9}{2}=9\)

Vậy \(P_{\min}=9\)

Bình luận (0)
Hung nguyen
24 tháng 4 2018 lúc 8:57

Đặt \(\left\{{}\begin{matrix}\sqrt{a}=x\\\sqrt{b}=y\\\sqrt{c}=z\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x^2}{2y-3}+\dfrac{y^2}{2z-3}+\dfrac{z^2}{2x-3}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)-9}\ge9\)

\(\dfrac{t^2}{2t-9}-9=\dfrac{\left(t-9\right)^2}{2t-9}\ge0\) (với \(t=x+y+z\))

Bình luận (0)
Neet
24 tháng 4 2018 lúc 11:55

# cách khác:

Áp dụng AM-GM: \(\dfrac{a}{2\sqrt{b}-3}+\left(2\sqrt{b}-3\right)\ge2\sqrt{a}\)

Thiết lập tương tự rồi cộng lại ta được

\(VT+2\sqrt{a}+2\sqrt{b}+2\sqrt{c}-9\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}\)

\(\Rightarrow VT\ge9\)

Dấu = xảy ra tại a=b=c=9

Bình luận (0)
phạm thảo
Xem chi tiết
Akai Haruma
21 tháng 4 2018 lúc 23:14

Lời giải:
Ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=27-3(3-a)(3-b)(3-c)\)

\(=27-3[27-9(a+b+c)+3(ab+bc+ac)-abc]\)

\(=27-3[3(ab+bc+ac)-abc]=27-9(ab+bc+ac)+3abc\)

Do đó:

\(A=a^3+b^3+c^3+\frac{15}{4}abc=27-9(ab+bc+ac)+\frac{27}{4}abc(*)\)

Áp dụng BĐT Schur :

\(abc\geq (a+b-c)(b+c-a)(c+a-b)\)

\(\Leftrightarrow abc\geq (3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27-18(a+b+c)+12(ab+bc+ac)-8abc\)

\(\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27\)

\(\Leftrightarrow 3abc\geq 4(ab+bc+ac)-9\)

\(\Rightarrow \frac{27}{4}abc\geq 9(ab+bc+ac)-\frac{81}{4}(**)\)

Từ \((*); (**)\Rightarrow A\geq 27-\frac{81}{4}=\frac{27}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
Đinh Bảo Như
23 tháng 4 2018 lúc 19:18

Ta có:

a3+b3+

Bình luận (0)