Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
một người gửi vào ngân hàng với số tiền ban đầu là 50 triệu đồng với lãi suất 0.65% một tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng số tiền lãi sẽ được nhập vào gốc để tính lãi cho tháng tiếp theo, chưa đầy 1 năm thì lãi suất tăng lên là 0.8% một tháng, người đó vẫn tiếp tục gửi thêm 1 tháng nữa. đến khi cần người này rút ra cả vốn lẫn lãi là 55486034.74 đồng( chưa làm tròn). hỏi người này đã tiết kiệm được bao nhiêu tháng
0 câu trả lời
y=log3(m\(^2\)-x\(^2\)). Để hàm số xác định trên khoảng (-2;2) thì giá trị m phải là bao nhiêu?
1 câu trả lời

Xét \(f\left(x\right)=m-x\) (m là tham số).
\(Min_{\left[-2;2\right]}f\left(x\right)=f\left(2\right)=m-2;Max_{\left[-2;2\right]}=f\left(-2\right)=m+2\).
Để làm số xác định trên khoảng (-2;2) thì \(m-x>0\) trên khoảng (-2;2).
Suy ra \(Mix_{\left[-2;2\right]}f\left(x\right)\ge0\Leftrightarrow\) \(m-2\ge0\Leftrightarrow m\ge2\).


Lời giải:
Đặt \(2^{x^2}=t\). Khi đó \(t\geq 1\)
PT trở thành: \(t^2-4t+6=m\Leftrightarrow t^2-4t+(6-m)=0\) (*)
Tư duy:
Nếu (*) có 1 nghiệm duy nhất thì $x^2$ là duy nhất, do đó pt ban đầu chỉ có thể có nhiều nhất 2 nghiệm
Nếu (*) có 2 nghiệm đều khác 1, khi đó $x^2$ có hai giá trị đều khác $0$, kéo theo pt ban đầu có 4 nghiệm
Như vậy, để PT ban đâu có 3 nghiệm thì (*) phải có 2 nghiệm phân biệt , trong đó một nghiệm bằng $1$. Bởi vì khi đó, nghiệm $t$ khác 1 sẽ cho 2 giá trị của $x$, nghiệm $t=1$ cho giá trị $x=0$ duy nhất.
Vậy (*) có nghiệm là $1$, tức là
\(1^2-4.1+(6-m)=0\Leftrightarrow 3-m=0\Leftrightarrow m=3\)
Thử lại thấy thỏa mãn
Đáp án D
Cho x,y là số thực dương \(log_9x=log_6y=log_4\left(\dfrac{x+y}{6}\right)\).Tính \(\dfrac{x}{y}\)
1 câu trả lời

Lời giải:
Đặt \(\log_9x=\log_6y=\log_4\left(\frac{x+y}{6}\right)=t\)
\(\Rightarrow \left\{\begin{matrix} x=9^t\\ y=6^t\\ x+y=6.4^t\end{matrix}\right.\)
\(\Rightarrow 9^t+6^t=6.4^t\)
\(\Leftrightarrow \left(\frac{9}{6}\right)^t+1=6.\left(\frac{4}{6}\right)^t\)
\(\Leftrightarrow \left(\frac{3}{2}\right)^t+1=6.\left(\frac{2}{3}\right)^t\)
Đặt \(\left(\frac{3}{2}\right)^t=a\Rightarrow a+1=6.\frac{1}{a}\)
\(\Leftrightarrow a^2+a-6=0\Leftrightarrow a=2\) hoặc $a=-3$
Mà \(a>0\Rightarrow a=2\)
Ta có: \(\frac{x}{y}=\frac{9^t}{6^t}=\left(\frac{9}{6}\right)^t=\left(\frac{3}{2}\right)^t=a=2\)
Vậy \(\frac{x}{y}=2\)


Lời giải:
\(f(x)=e^x(\sin x-2\cos x)\)
\(\Rightarrow f'(x)=-e^x\cos x+3e^x\sin x\)
\(f''(x)=4e^x\sin x+2e^x\cos x\)
Do đó:
\(m=\frac{f'(x)}{f''(x)+5e^x}=\frac{-e^x\cos x+3e^x\sin x}{4e^x\sin x+2e^x\cos x+5e^x}=\frac{3\sin x-\cos x}{4\sin x+2\cos +5}\)
\(\Leftrightarrow m(4\sin x+2\cos x+5)=3\sin x-\cos x\)
\(\Leftrightarrow 5m=\sin x(3-4m)+\cos x(-2m-1)\) (*)
Để pt có nghiệm thì \(5m\in [\min; \max]\) của
\(\sin x(3-4m)+\cos x(-2m-1)\) (1)
Áp dụng BĐT Bunhiacopxky:
\([\sin x(3-4m)+\cos x(-2m-1)]^2\leq (\sin^2x+\cos^2x)[(3-4m)^2+(-2m-1)^2](**)\)
\(\Leftrightarrow [\sin x(3-4m)+\cos x(-2m-1)]^2\leq 20m^2-20m+10\)
\(\Leftrightarrow -\sqrt{20m^2-20m+10}\leq \sin x(3-4m)+\cos x(-2m-1)\le \sqrt{20m^2-20m+10}\) (2)
Từ \((1);(2)\Rightarrow -\sqrt{20m^2-20m+10}\leq 5m\leq \sqrt{20m^2-20m+10}\)
\(\Leftrightarrow 25m^2\leq 20m^2-20m+10\) (***)
\(\Leftrightarrow m^2+4m-2\leq 0\Leftrightarrow -2-\sqrt{6}\leq m\leq \sqrt{6}-2\)
Do đó, \(a=-2-\sqrt{6};b=\sqrt{6}-2\)
\(\Leftrightarrow a+4b=-10+3\sqrt{6}\)
Đáp án B
Thực chất bạn có thể kết hợp từ dòng (*), (**), (***) luôn được nhưng để dễ hiểu hơn thì mình biến bài làm dài hơn 1 chút.
Với số thực dương a,b thoả mãn a^2+b^2=8ab. Tìm log (a+b)
Các bạn giúp mình với nhé. Cảm ơn nhiều.
5 câu trả lời

Đây là trắc nghiệm đúng không. Vậy thì 4 đáp án a,b,c,d đâu rồi. Không thể tính ra số cụ thể đâu. Nhưng có thể biểu diễn theo biến.


Bài 48:
PT hoành độ giao điểm:
\(x^3-3x^2+x+2-(mx-m+1)=0\)
\(\Leftrightarrow (x-1)(x^2-2x-1-m)=0\)
Để hai đths cắt nhau tại ba điểm phân biệt thì pt trên phải có ba nghiệm phân biệt, tức là \(x^2-2x-(m+1)=0\) có hai nghiệm phân biệt khác 1
\(\Rightarrow \left\{\begin{matrix} 1-2-(m+1)\neq 0\\ \Delta'=1+(m+1)>0\end{matrix}\right.\Rightarrow m> -2\)
Gọi \(x_1,x_2\) là hai nghiệm của pt trên thì \(x_1,x_2=\frac{-b'\pm \sqrt{\Delta'}}{a}=1\pm \sqrt{m+2}\)
Do đề bài không yêu cầu thứ tự các điểm, nên ta đặt ba giao điểm của 2 đths là:
\(A(1;1)\)
\(B(x_1; mx_1-m+1)\)
\(C(x_2;mx_2-m+1)\)
(miễn sao thỏa mãn tồn tại 2 đoạn thẳng tạo bởi 2 trong 3 điểm trên có độ dài bằng nhau)
Ta có:
\(AB=\sqrt{(x_1-1)^2+(mx_1-m)^2}=\sqrt{(x_1-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)
\(AC=\sqrt{(x_2-1)^2+(mx_2-m)^2}=\sqrt{(x_2-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)
\(BC=.....\)
Nhìn trên thì dễ thấy \(AB=AC\) luôn bằng nhau với mọi \(m>-2\), tức là thỏa mãn đkđb
Vậy \(m>-2 \) hay \(m\in (-2;+\infty)\)
Đáp án D

Câu 47:
Ta có \(\log_3\frac{1-xy}{x+2y}=3xy+x+2y-4\)
\(\Leftrightarrow \log_3(1-xy)-\log_3(x+2y)=3(xy-1)-1+(x+2y)\)
\(\Leftrightarrow \log_3(3-3xy)+(3-3xy)=\log_3(x+2y)+(x+2y)\)
Xét hàm \(f(x)=\log_3x+x\Rightarrow f'(x)=\frac{1}{x\ln 3}+1>0\) với \(x>0\)
Do đó , hàm là hàm đồng biến trên TXĐ
\(\Rightarrow f(3-3xy)=f(x+2y)\Leftrightarrow 3-3xy=x+2y\)
\(\Leftrightarrow y=\frac{3-x}{3x+2}\). Vì \(x,y>0\Rightarrow \frac{3-x}{3x+2}>0\Rightarrow 0< x< 3\)
Ta có \(P=x+\frac{3-x}{3x+2}\)
\(P'=\frac{9x^2+12x-7}{(3x+2)^2}=0\Leftrightarrow x=\frac{-2+\sqrt{11}}{3}\) (chọn) hoặc \(x=\frac{-2-\sqrt{11}}{3}\) (loại vì $x>0$)
Lập bảng biến thiên ta suy ra \(P_{\min}=P(\frac{-2+\sqrt{11}}{3})=\frac{-3+2\sqrt{11}}{3}\)
Đáp án D


Đầu tiên ta chứng minh bổ đề: Với \(x,y\ge2\) thì
\(x+y\le xy\)
\(\Leftrightarrow2xy-2x-2y\ge0\)
\(\Leftrightarrow x\left(y-2\right)+y\left(x-2\right)\ge0\)(đúng)
Ta cần chứng minh:
\(log_{a+b}c^2+log_{b+c}a^2+log_{c+a}b^2\ge3\)
\(\Leftrightarrow log_{a+b}c+log_{b+c}a+log_{c+a}b\ge\dfrac{3}{2}\)
Ta có:
\(log_{a+b}c+log_{b+c}a+log_{c+a}b\)
\(=\dfrac{lna}{ln\left(b+c\right)}+\dfrac{lnb}{ln\left(c+a\right)}+\dfrac{lnc}{ln\left(a+b\right)}\)
\(\ge\dfrac{lna}{ln\left(bc\right)}+\dfrac{lnb}{ln\left(ca\right)}+\dfrac{lnc}{ln\left(ab\right)}\)
\(=\dfrac{lna}{lnb+lnc}+\dfrac{lnb}{lnc+lna}+\dfrac{lnc}{lna+lnb}\)
Đặt \(\left\{{}\begin{matrix}lna=x\\lnb=y\\lnc=z\end{matrix}\right.\) thì bài toán cần chứng minh trở thành
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
Đây là bất đẳng thức Nesbit việc chứng minh quá đơn giản nên mình nhường lại cho bạn làm nhé.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có thể tích là V. Gọi M và N là trung điểm A'B' mà B'C' thì thể tích khối chóp D'.DMN bằng? A.V/8 B. V/2 C.V/16 D. V/4
Mấy anh chị ơi giúp em giải bài này với ạ. Giải chi tiết dùm em. mai em kiểm tra rồi

Với a,b >0,a khác 1 thỏa mãn logab=\(\dfrac{b}{4}\) và log2a=\(\dfrac{16}{b}\).Tổng a+b bằng:
A.12 B.10 C.16 D.18
2 câu trả lời

Lời giải:
Ta có \(\left\{\begin{matrix} \log_ab=\frac{b}{4}\\ \log_2a=\frac{16}{b}\end{matrix}\right.\Rightarrow 4=\log_2a.\log_ab=\log_2b\)
\(\Rightarrow b=16\).
\(\log_2a=\frac{16}{b}=1\Rightarrow a=2\)
Do đó \(a+b=18\). Đáp án D.
Cho x,y >0, x,y khác 1,logyx+ logxy =\(\dfrac{10}{3}\) và xy=144,vậy \(\dfrac{x+y}{2}\)=?
A.24 B.30 C.12\(\sqrt{2}\) D.13\(\sqrt{3}\)
1 câu trả lời

Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
tính giá trị của biểu thức A=log32.log43.log54...log1615 là:
A.1 B.\(\dfrac{3}{4}\) C.\(\dfrac{1}{4} \) D.\(\dfrac{1}{2}\)
1 câu trả lời

Lời giải:
Sử dụng công thức \(\log_ab=\frac{\ln b}{\ln a}\)
\(\Rightarrow A=\frac{\ln 2}{\ln 3}.\frac{\ln 3}{\ln 4}.\frac{\ln 4}{\ln 5}....\frac{\ln 15}{\ln 16}\)
\(\Leftrightarrow A=\frac{\ln 2}{\ln 16}=\log_{16}2=\frac{1}{4}\)
Đáp án C.
...
Dưới đây là những câu hỏi có bài toán hay do Hoc24 lựa chọn.
Building.
Bảng xếp hạng môn Toán
Nguyễn Huy Tú1820GP
Akai Haruma1580GP
Ace Legona1565GP
soyeon_Tiểubàng giải893GP
Nguyễn Thanh Hằng857GP
Hồng Phúc Nguyễn787GP
Phương An781GP
Võ Đông Anh Tuấn771GP
Trần Việt Linh759GP
Hoàng Lê Bảo Ngọc700GP
Nhã Doanh54GP
Phạm Nguyễn Tất Đạt44GP
ngonhuminh33GP
Akai Haruma32GP
Hồng Phúc Nguyễn28GP
kuroba kaito22GP
nguyen thi vang20GP
Nguyễn Thanh Hằng19GP
Nguyễn Minh Hùng17GP
lê thị hương giang15GP
Lời giải:
Đặt \(\log_2x=t\Rightarrow x=2^t\).
Để \(x\in (0;1)\Leftrightarrow 0< 2^t< 1\Leftrightarrow t< 0\)
PT trở thành:
\(t^2+t+m=0\) và ta cần tìm m để pt có nghiệm âm
Điều kiện để pt có nghiệm: \(\Delta=1-4m\geq 0\Leftrightarrow m\leq \frac{1}{4}\) (1)
Áp dụng hệ thức Viete, để PT có nghiệm âm thì:
\(\left\{\begin{matrix} t_1+t_2< 0\\ t_1t_2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -1< 0\\ m> 0\end{matrix}\right.\Leftrightarrow m> 0\) (2)
Từ (1)(2) suy ra \(0< m\leq \frac{1}{4}\)