§2. Phương trình quy về phương trình bậc nhất, bậc hai

Lê Thị Thục Hiền
23 tháng 5 lúc 20:14

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Xét \(\Delta=4\left(m+1\right)^2-4.3.\left(3m-5\right)\)\(=4m^2-28m+64=4\left(m-\dfrac{7}{2}\right)^2+15>0\forall m\)

=> pt luôn có hai nghiệm pb

Kết hợp viet và giả thiết có hệ: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2m+2}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\x_1=\dfrac{m+1}{2}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(m+1\right)}{6}.\dfrac{\left(m+1\right)}{2}=\dfrac{3m-5}{3}\)\(\Leftrightarrow m^2-10m+21=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=3\end{matrix}\right.\)

Tại m=7 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)

Tại m=3 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)

 

Bình luận (0)
Akai Haruma
13 tháng 3 lúc 12:35

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)

Bình luận (1)
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:55

Chắc bạn ghi nhầm căn thức thứ 2

\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)

\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)

\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)

\(A\le18\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z=4\)

Bình luận (0)
santa
28 tháng 12 2020 lúc 21:53

m(x-3) = m2 +2 - x  (1)

<=> mx - 3m - m2 - 2 + x =0

<=> x(m+1) = m2 +3m + 2

Với m = -1, thay vào (1) ta được :

(-1)(x-3) = (-1)2 + 2 - x

<=> -x + 3 = 3 -x

<=> x \(\in R\)

Với m \(\ne1\)<=> \(x=\dfrac{m^2+3m+2}{m+1}=m+2\)

p/s: e trl theo ý hiểu thôi :(((

 

Bình luận (0)
Hồng Phúc
23 tháng 12 2020 lúc 20:45

ĐK: \(x\ge\dfrac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{10x+1}-\sqrt{9x+4}\right)+\left(\sqrt{3x-5}-\sqrt{2x-2}\right)=0\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

Dễ thấy \(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}>0\)

\(pt\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

Bình luận (0)
Hồng Phúc
23 tháng 12 2020 lúc 20:31

ĐK: \(x\le\dfrac{3}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3-x}=a\\\sqrt{3-2x}=b\end{matrix}\right.\left(a>0,b\ge0\right)\)

\(pt\Leftrightarrow a-b=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{3-x}=\sqrt{3-2x}\Leftrightarrow x=0\left(tm\right)\)

TH2: \(a+b=1\Leftrightarrow\sqrt{3-x}+\sqrt{3-2x}=1\)

\(\Leftrightarrow6-3x+2\sqrt{\left(3-x\right)\left(3-2x\right)}=1\)

\(\Leftrightarrow2\sqrt{2x^2-9x+9}=3x-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(2x^2-9x+9\right)=\left(3x-5\right)^2\\3x-5\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+6x-11=0\\x\ge\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=0\)

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 21:15

Bạn kiểm tra lại đề, vế phải là \(x+\dfrac{3}{9}\) hay \(\dfrac{x+3}{9}\)

Bình luận (3)
Linh Ca Thời Mộ
21 tháng 12 2020 lúc 21:34

a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)

ĐKXĐ: \(x\ne\dfrac{3}{4}\)

PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)

                  \(\Rightarrow6-x=2\)

                  \(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)

 

 

Bình luận (1)
Linh Ca Thời Mộ
21 tháng 12 2020 lúc 21:41

b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)

ĐKXĐ: \(x\ne\dfrac{3}{2}\)

PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)

                  \(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)

                  \(\Leftrightarrow8x=12\)

                  \(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)

Vậy \(x\in\varnothing\).

Bình luận (0)
𝓓𝓾𝔂 𝓐𝓷𝓱
21 tháng 12 2020 lúc 21:41

a) ĐK: \(x\ne\dfrac{3}{4}\)

PT \(\Rightarrow27x-18-4x^2=8x-6\)

\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

  Vậy phương trình có nghiệm \(x=4\)

b) ĐK: \(x\ne\dfrac{3}{2}\)

PT \(\Rightarrow3-x+2x^2-5x+3=-4\) 

\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)

  Vậy phương trình vô nghiệm

c) ĐK: \(x\ne3\)

PT \(\Rightarrow2x^2-5x-3=2x-4\)

\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)

  Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN