Cho các số \( - 7;\,0,5; 0;1\frac{2}{3}\). Với mỗi số, hãy viết một phân số bằng số đã cho.
Cho các số \( - 7;\,0,5; 0;1\frac{2}{3}\). Với mỗi số, hãy viết một phân số bằng số đã cho.
Ta có: \( - 7 = \frac{{ - 7}}{1}\); \(0,5 = \frac{5}{{10}}\); \(0 =\frac{0}{1}\); \(1\frac{2}{3} = \frac{{1.3 + 2}}{3} = \frac{5}{3}\).
Chú ý: Ta cũng có thể viết các số trên bằng các phân số khác.
Vì sao các số \( - 0,33;\,0;\,3\frac{1}{2};\,0,25\) là các số hữu tỉ?
Các số \( - 0,33;\,0;\,3\frac{1}{2};\,0,25\) là các số hữu tỉ vì:
\(\begin{array}{l} - 0,33 = \frac{{-33}}{{100}} = \frac{{-99}}{{300}} = ....\\0 = \frac{0}{1} = \frac{0}{2} = ...\\3\frac{1}{2} = \frac{7}{2} = \frac{{ - 7}}{{ - 2}} = ...\\0,25 = \frac{{25}}{{100}} = \frac{1}{4} = ...\end{array}\
vì các số đó viết đc dưới dạng phân số
-0,33=\(-\dfrac{33}{100}\)
0=\(\dfrac{0}{1}\)
\(3\dfrac{1}{2}=\dfrac{7}{2}\)
0,25=\(\dfrac{1}{4}\)
Viết các số đo các đại lượng sau dưới dạng \(\frac{a}{b}\) với \(a,b \in \mathbb{Z},\,\,b \ne 0.\)
a) \(2,5\)kg đường
b) \(3,8\) m dưới mực nước biển
a) \(2,5\,\,kg = \frac{{25}}{{10}}\,\,kg\, = \,\frac{5}{2}\,kg\)
b) \(3,8\,m = \frac{{38}}{{10}}\,m\, = \frac{{19}}{5}\,m\)
a) So sánh hai phân số \(\frac{2}{9}\) và \( - \frac{5}{9}\).
b) Trong mỗi trường hợp sau, nhiệt độ nào cao hơn?
i) \({0^o}C\) và \( - 0,{5^o}C;\) ii) \( - {12^o}C\) và \( - {7^o}C\).
a) Ta có: \(2 > - 5\) nên \(\frac{2}{9} > \frac{{ - 5}}{9}\)hay \(\frac{2}{9} > - \frac{5}{9}\).
b) Ta có:
i) \(0 > - 0,5\) nên \({0^o}C > - 0,{5^o}C;\)
ii) Do \(12 > 7\) nên \( - 12 < - 7\). Do đó, \( - {12^o}C < - {7^o}C\).
Cho các số hữu tỉ: \(\frac{{ - 7}}{{12}};\,\frac{4}{5};\,5,12;\, - 3;\,\frac{0}{{ - 3}};\, - 3,75.\)
a) So sánh \(\frac{{ - 7}}{{12}}\) với \( - 3,75\); \(\frac{0}{{ - 3}}\) với \(\frac{4}{5}\).
b) Trong các số hữu tỉ đã cho, số nào là số hữu tỉ dương, số nào là số hữu tỉ âm, số nào không là số hữu tỉ dương cũng không là số hữu tỉ âm?
a) +) Ta có: \( - 3,75 = \frac{{ - 375}}{{100}} = \frac{{ - 15}}{4} = \frac{{ - 45}}{{12}}\).
Do \( - 7 > - 45\) nên \(\frac{{ - 7}}{{12}} > \frac{{ - 45}}{{12}}\).
+) Ta có: \(\frac{0}{{ - 3}} = 0\). Nên \(\frac{0}{{ - 3}} < \frac{4}{5}\).
b) Các số hữu tỉ dương là: \(\frac{4}{5};\,5,12\).
Các số hữu tỉ âm là: \(\frac{{ - 7}}{{12}};\, - 3;\, - 3,75\)
Do \(\frac{0}{{ - 3}} = 0\) nên số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{ - 3}}\).
a) Biểu diễn các số nguyên -1;1;-2 trên trục số.
b) Quan sát Hình 2. Hãy dự đoán điểm A biểu diễn số hữu tỉ nào?
a)
b) Điểm A biểu diễn số hữu tỉ: \(\frac{1}{3}\)
a) Các điểm M, N, P trong Hình 6 biểu diễn các số hữu tỉ nào?
b) Biểu diễn các số hữu tỉ sau trên trục số: \( - 0,75;\,\frac{1}{{ - 4}};\,1\frac{1}{4}.\)
a) Các điểm M, N, Q biểu diễn lần lượt các số hữu tỉ:\(\frac{5}{3};\,\frac{{ - 1}}{3};\,\frac{{ - 4}}{3}\).
b)
Điểm P biểu diễn: \(-\dfrac{4}{3}\)
Điểm N biểu diễn: \(-\dfrac{1}{3}\)
Điểm M biểu diễn: \(\dfrac{5}{3}\)
Em có nhận xét gì về vị trí điểm \(\frac{{ - 4}}{3}\) và \(\frac{4}{3}\) trên trục số (Hình 7) so với điểm 0?
Hai điểm này cách đều số 0 trên trục số
Hai điểm \(\frac{{ - 4}}{3}\) và \(\frac{4}{3}\) cách đều và nằm về hai phía so với điểm 0.
Tìm số đối của mỗi số sau: \(7;\frac{{ - 5}}{9};-0,75;\,0;\,1\frac{2}{3}\).
Số đối của các số \(7;\frac{{ - 5}}{9};-0,75;\,0;\,1\frac{2}{3}\) lần lượt là: \( - 7;\frac{5}{9};0,75;\,0;\, - 1\frac{2}{3}\)
Bạn Hồng đã phát biểu: “4,1 lớn hơn 3,5. Vì thế – 4,1 cũng lớn hơn -3,5”.
Theo em, phát biểu của bạn Hồng có đúng không? Tại sao?
Do \(4,1 > 3,5\) nên \( - 4,1 < - 3,5\). Vì vậy phát biểu của bạn Hồng là sai.
Phát biểu của bạn Hồng sai vì trên trục số, -3,5 ở gần 0 hơn là -4,1 nên -3,5>-4,1