Trên hình bs.6
Có bao nhiêu cặp tam giác bằng nhau ?
(A) 2 (B) 3 (C) 4 (D) 5
Hãy chọn phương án đúng ?
Trên hình bs.6
Có bao nhiêu cặp tam giác bằng nhau ?
(A) 2 (B) 3 (C) 4 (D) 5
Hãy chọn phương án đúng ?
Cho hình bs.7.
Chứng minh rằng OA = OB ?
Thảo luận (3)Hướng dẫn giảiXét tam giác IAC và IBD có:
IA = IB ( theo đề bài)
Góc AIC = góc BID ( 2 góc đối đỉnh)
IC = ID ( theo đề bài )
Do đó: tam giác IAC = tam giác IBD (c.g.c)
Suy ra góc ACI = góc BDI ( 2 góc tương ứng) \(\left(1\right)\)
Suy ra góc IAC = IBD ( 2góc tương ứng) (*)
Có I nằm giữa B và C
Suy ra: BI + CI = BC (2)
Có I nằm giữa A và D
Suy ra: AI + DI = AD (3)
Từ 2 và 3 suy ra: BC = AD (4)
Có góc OAI + góc IAC = \(180^0\)(2 góc kề bù)
góc OBI + góc IBD = \(180^0\)(2 góc kề bù)
mà: góc IAC = góc IBD (*)
Suy ra góc: OAI = góc OBI (5)
Xét tam giác: OAD và tam giác OBC có:
góc ACI = góc BDI (1)
AD = BC (4)
góc OAI = góc OBI (5)
Do đó: tam giác OAD = tam giác OBC (g.c.g)
Suy ra: OA = OB (2 cạnh tương ứng)
(Trả lời bởi Bùi Khánh Thi)
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CD. Gọi I là giao điểm của BE và CD
a) Chứng minh rằng IB = IC, ID = IE
b) Chứng minh rằng BC song song với DE
c) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm A, M, I thẳng hàng
Thảo luận (3)Hướng dẫn giải