Bài 25. Hai mặt phẳng vuông góc

Bài 7.16 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

a) \(SA \bot \left( {ABC} \right);SA \subset \left( {SAB} \right) \Rightarrow \left( {SAB} \right) \bot \left( {ABC} \right)\)

\(\left. \begin{array}{l}AH \bot BC\\SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right)\\AH \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAH} \right);BC \subset \left( {SBC} \right) \Rightarrow \left( {SAH} \right) \bot \left( {SBC} \right)\)

b) Ta có \(AH \bot BC,BC \bot SH\left( {BC \bot \left( {SAH} \right)} \right)\)

\( \Rightarrow \left[ {S,BC,A} \right] = \left( {SH,AH} \right) = \widehat {SHA}\)

Xét tam giác ABC vuông tại A có

\(\widehat {ABC} = {30^0} \Rightarrow \widehat {ACH} = {60^0}\)

Xét tam giác ACH vuông tại H có

\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} \Rightarrow AH = a.\sin {60^0} = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác SHA vuông tại A có

\(\tan \widehat {SHA} = \frac{{SA}}{{AH}} = \frac{{a\sqrt 3 }}{2}:\frac{{a\sqrt 3 }}{2} = 1 \Rightarrow \widehat {SHA} = {45^0}\)

Vậy \(\left[ {S,BC,A} \right] = {45^0}\)

 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.17 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

a) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \)

Xét tam giác AA’C vuông tại A có

\(A'{C^2} = A{A'^2} + A{C^2} = {a^2} + {\left( {a\sqrt 2 } \right)^2} = 3{a^2} \Rightarrow A'C = a\sqrt 3 \)

Vậy độ dài đường chéo hình lập phương bằng \(a\sqrt 3 \)

b) Ta có \(\begin{array}{l}BD \bot AC,BD \bot AA' \Rightarrow BD \bot \left( {ACC'A'} \right);BD \subset \left( {BDD'B'} \right)\\ \Rightarrow \left( {ACC'A'} \right) \bot \left( {BDD'B'} \right)\end{array}\)

c) Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),CO \bot BD \Rightarrow \left[ {C,BD,C'} \right] = \left( {CO,C'O} \right) = \widehat {COC'}\)

\(OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác COC’ vuông tại C có

\(\tan \widehat {COC'} = \frac{{CC'}}{{OC}} = \frac{a}{{\frac{{a\sqrt 2 }}{2}}} = \sqrt 2  \Rightarrow \widehat {COC'} = \arctan \sqrt 2 \)

Ta có \(C'O \bot BD\left( {BD \bot \left( {ACC'A'} \right)} \right),AO \bot BD \Rightarrow \left[ {A,BD,C'} \right] = \left( {AO,C'O} \right) = \widehat {AOC'}\)

\(\widehat {AOC'} = {180^0} - \widehat {COC'} \approx 125,{26^0}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.18 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

a) Ta có \(BB' \bot \left( {ABCD} \right);BB' \subset \left( {BDD'B'} \right) \Rightarrow \left( {BDD'B'} \right) \bot \left( {ABCD} \right)\)

b) A là hình chiếu của A trên (ABCD)

C là hình chiếu của C’ trên (ABCD) do \(CC' \bot \left( {ABCD} \right)\)

\( \Rightarrow \) AC là hình chiếu của AC’ trên (ABCD)

c) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2} \Rightarrow AC = \sqrt {{a^2} + {b^2}} \)

Xét tam giác AC’C vuông tại C có

\(A{C'^2} = C{C'^2} + A{C^2} = {c^2} + {a^2} + {b^2} \Rightarrow A'C = \sqrt {{a^2} + {b^2} + {c^2}} \)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.19 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

Vì hình chóp S.ABC đều, gọi G là hình chiếu của S trên (ABC) nên G là tâm của đáy ABC là tam giác đều do đó G cũng là trọng tâm hay trực tâm của tam giác ABC.

Gọi AG cắt BC tại D

a) Ta có A là hình chiếu của A trên (ABC)

G là hình chiếu của S trên (ABC)

\( \Rightarrow \) AG là hình chiếu của SA trên (ABC)

\( \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,AG} \right) = \widehat {SAG}\)

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà G là trọng tâm nên \(AG = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác SAG vuông tại G có

\(SG = \sqrt {S{A^2} - A{G^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

\(\sin \widehat {SAG} = \frac{{SG}}{{SA}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} :b = \sqrt {1 - \frac{{{a^2}}}{{3{b^2}}}} \)

b) Ta có \(AG \bot BC,SG \bot BC \Rightarrow BC \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow BC \bot SD\)

\(BC \bot AD\) (G là trực tâm)

\(\begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\ \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {AD,SD} \right) = \widehat {SDA}\end{array}\)

Mà G là trọng tâm nên \(GD = \frac{1}{3}AD = \frac{{a\sqrt 3 }}{6}\)

Xét tam giác SGD vuông tại G có

\(\tan \widehat {SGD} = \frac{{SG}}{{GD}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} :\frac{{a\sqrt 3 }}{6} = \frac{6}{{a\sqrt 3 }}.\sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.20 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Vì hai mái nhà trong Hình 7.72 là hai hình chữ nhật nên góc nhị diện tạo bởi hai nửa mặt phẳng tương ứng chứa hai mái nhà là góc giữa hai đường thẳng OA và OB.

Xét tam giác OAB có

\(\cos \widehat {AOB} = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2OA.OB}} = \frac{{2,{8^2} + {4^2} - 4,{8^2}}}{{2.2,8.4}} = \frac{1}{{28}} \Rightarrow \widehat {AOB} \approx {88^0}\)

b) (OAB) vuông góc với đường nóc nhà, đường nóc nhà song song với mặt phẳng đất nên (OAB) vuông góc với mặt đất phẳng đất.

c) Đường thẳng qua B song song với mặt đất cắt đường thẳng qua A vuông góc với mặt đất tại H

Ta có \(\sin \widehat {ABH} = \frac{{0,5}}{{4,8}} \Rightarrow \widehat {ABH} \approx {6^0};\cos \widehat {OBA} = \frac{{13}}{{16}} \Rightarrow \widehat {OBA} \approx {36^0}\)

Do đó \(\widehat {OBH} = \widehat {ABH} + \widehat {OBA} \approx {42^0}.\)

Vậy góc giữa mái nhà (chứa OB) so với mặt đất khoảng 420

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 7.21 trang 53 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Giả sử góc tạo bởi đường thẳng dành cho người khuyết tật và mặt phẳng nằm ngang là α 

Vì độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá \(\frac{1}{{12}}\)nên ta có

\(\tan \alpha  \le \frac{1}{{12}} \Rightarrow \alpha  \le 4,{76^0}\)

Vậy góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá 4,760

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)