Bài 2. Giá trị lượng giác của một góc lượng giác

Hoạt động 1 (Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

 

Gọi B, C lần lượt là hình chiếu của M lên Ox, Oy; D, E lần lượt là hình chiếu của N lên Ox, Oy

Ta có: OM = ON = 1

\(\widehat{MOC}=\dfrac{2\pi}{3}-\dfrac{\pi}{2}=\dfrac{\pi}{6}\\ \Rightarrow\left\{{}\begin{matrix}sin\widehat{MOC}=\dfrac{1}{2}\Rightarrow MC=\dfrac{1}{2}\\cos\widehat{MOC}=\dfrac{\sqrt{3}}{2}\Rightarrow MB=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Do điểm M có hoành độ nằm bên trái trục Ox nên tọa độ của điểm M là \(M\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\)

\(\widehat{NOD}=-\dfrac{\pi}{4}\\ \Rightarrow\left\{{}\begin{matrix}sin\widehat{NOD}=-\dfrac{\sqrt{2}}{2}\Rightarrow ND=-\dfrac{\sqrt{2}}{2}\\cos\widehat{NOD}=\dfrac{\sqrt{2}}{2}\Rightarrow NE=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

Vậy tọa độ điểm N là \(N\left(\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành (Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(\begin{array}{l}\sin \left( { - \frac{{2\pi }}{3}} \right) =  - \frac{{\sqrt 3 }}{2}\\\tan 495^\circ  =  - 1\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Thực hành 2 (Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(\begin{array}{l}\cos 75^\circ  = \frac{{\sqrt 6  - \sqrt 2 }}{4}\\\tan \left( { - \frac{{19\pi }}{6}} \right) =  - \frac{{\sqrt 3 }}{3}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Hoạt động 2 (Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a)    Do \(\begin{array}{l}\sin \alpha  = MH \Rightarrow {\sin ^2}\alpha  = M{H^2}\\\cos \alpha  = OH \Rightarrow {\cos ^2}\alpha  = O{H^2}\end{array}\)

Áp dụng định lý Py – Ta – Go vào tam giác OMH vuông tại H ta có:

\(\begin{array}{l}M{H^2} + O{H^2} = O{M^2} = 1\\ \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\end{array}\)

b)    Chia cả hai vế cho \({\cos ^2}\alpha \), ta được:

\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\end{array}\)

c)    Chia cả hai vế cho \({\sin ^2}\alpha \), ta được:

\(\begin{array}{l}\frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\\ \Leftrightarrow {\cot ^2}\alpha  + 1 = \frac{1}{{{{\sin }^2}\alpha }}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Thực hành 3 (Giải mục 1 trang 15,16 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta có:

 \(\begin{array}{l}{\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha  =  \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)

Do \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \cos \alpha  =  - \frac{{3\sqrt {13} }}{{13}}\)

Ta có: \(\begin{array}{l}\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha  =  - \frac{{2\sqrt {13} }}{{13}}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Hoạt động 3 (Giải mục 1 trang 15,16 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Thực hành (Giải mục 1 trang 15,16 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a) \(cos638^o=cos\left(-82^o\right)=cos\left(82^o\right)=sin8^o\)

b) \(cot\dfrac{19\pi}{5}=cot\dfrac{4\pi}{5}=-cot\dfrac{\pi}{5}\)

(Trả lời bởi Mai Trung Hải Phong)
Thảo luận (1)

Vận dụng (Giải mục 1 trang 15,16 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Bài 1 (trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo)

Hướng dẫn giải

a, Ta có: \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow\left(\dfrac{3}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos\alpha=\pm\dfrac{4}{5}\)

Vậy đẳng thức có thể đồng thời xảy ra.

b, Ta có: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow1+cot^2\alpha=\dfrac{1}{\left(\dfrac{1}{3}\right)^2}\Rightarrow cot\alpha=\pm2\sqrt{2}\)

Hai đẳng thức không thể đồng thời xảy ra.

c, Ta có: \(tan\alpha\cdot cot\alpha=1\Rightarrow3\cdot cot\alpha=1\Rightarrow cot\alpha=\dfrac{1}{3}\)

Đẳng thức có thể đồng thời xảy ra.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo)

Hướng dẫn giải

Ta có:

 \(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi  + \alpha } \right) =  \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2}  + \alpha } \right) - \cos \left( {12\pi  + \pi + \alpha } \right) =  \sin \left( {-8\pi  + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha  \right) = \cos \left( \alpha  \right) + \cos \left( \alpha  \right) = 2\cos \left( \alpha  \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)