Cho \(\cos \alpha = \frac{2}{3}\).
Tính \(B = \cos \frac{{3\alpha }}{2}.\cos \frac{\alpha }{2}\)
Cho \(\cos \alpha = \frac{2}{3}\).
Tính \(B = \cos \frac{{3\alpha }}{2}.\cos \frac{\alpha }{2}\)
Sử dụng công thức biến đổi tích thành tổng và đặt \(a + b = u;\,\,a - b = v\) biến đổi các biểu thức sau thành tích: \(\cos u + \cos v;\,\,\cos u - \cos v;\,\,\sin u + \sin v;\,\,\sin u - \sin v\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b = - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Tính \(D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{\cos \frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\)
Thảo luận (1)Hướng dẫn giảiTa có:
\(D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{\cos \frac{{7\pi }}{9} - \cos \frac{\pi }{9}}} = \frac{{2.\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right).\cos \left( {\frac{{\frac{{7\pi }}{9} - \frac{\pi }{9}}}{2}} \right)}}{{ - 2.\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right).\sin \left( {\frac{{\frac{{7\pi }}{9} - \frac{\pi }{9}}}{2}} \right)}} = -\cot \frac{\pi }{3} = -\frac{{\sqrt 3 }}{3}\)
(Trả lời bởi Hà Quang Minh)
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính: \(\sin \left( {a + \frac{\pi }{6}} \right),\,\cos \left( {a - \frac{\pi }{3}} \right),\,\tan \left( {a + \frac{\pi }{4}} \right)\)
Thảo luận (1)Hướng dẫn giảiTa có:
\({\cos ^2}a + {\sin ^2}a = 1 \Rightarrow \sin a = \pm \frac{4}{5}\)
Do \(0 < a < \frac{\pi }{2} \Leftrightarrow \sin a = \frac{4}{5}\)
\(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{4}{3}\)
Ta có;
\(\begin{array}{l}\sin \left( {a + \frac{\pi }{6}} \right) = \sin a.\cos \frac{\pi }{6} + \cos a.\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\cos \left( {a - \frac{\pi }{3}} \right) = \cos a.\cos \frac{\pi }{3} + \sin a.\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a.tan\frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} = - 7\end{array}\)
(Trả lời bởi Hà Quang Minh)
Tính
\(A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\)
\(B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\\A = \sin \left( {a - 17^\circ - a - 13^\circ } \right) = \sin \left( { - 30^\circ } \right) = - \frac{1}{2}\end{array}\)
\(\begin{array}{l}B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\\B = \cos \left( {b + \frac{\pi }{3} + \frac{\pi }{6} - b} \right) = \cos \frac{\pi }{2} = 0\end{array}\)
(Trả lời bởi Hà Quang Minh)
Cho \(\tan \left( {a + b} \right) = 3,\,\tan \left( {a - b} \right) = 2\).
Tính: \(\tan 2a,\,\,\tan 2b\)
Thảo luận (1)Hướng dẫn giảiTa có:
\(\begin{array}{l}2a = \left( {a + b} \right) + \left( {a - b} \right) \Rightarrow \tan 2a = \tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right]\\2b = \left( {a + b} \right) - \left( {a - b} \right) \Rightarrow \tan 2b = \tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right]\end{array}\)
\(\begin{array}{l}\tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) + \tan \left( {a - b} \right)}}{{1 - \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 + 2}}{{1 - 3.2}} = - 1\\\tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) - \tan \left( {a - b} \right)}}{{1 + \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 - 2}}{{1 + 3.2}} = \frac{1}{7}\end{array}\)
Vậy \(\tan 2a = - 1,\,\,\,\tan 2b = \frac{1}{7}\)
(Trả lời bởi Hà Quang Minh)
Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính: \(\cos 2a,\,\cos 4a\)
Thảo luận (1)Hướng dẫn giảiTa có:
\({\sin ^2}a + {\cos ^2}a = 1 \Leftrightarrow {\left( {\frac{2}{{\sqrt 5 }}} \right)^2} + {\cos ^2}a = 1 \Leftrightarrow {\cos ^2}a = \frac{1}{5}\)
\(\cos 2a = {\cos ^2}a - {\sin ^2}a = \frac{1}{5} - {\left( {\frac{2}{{\sqrt 5 }}} \right)^2} = - \frac{3}{5}\)
Ta có:
\({\cos ^2}2a + {\sin ^2}2a = 1 \Leftrightarrow {\left( {\frac{{ - 3}}{5}} \right)^2} + {\sin ^2}2a = 1 \Leftrightarrow {\sin ^2}2a = \frac{{16}}{{25}}\)
\(\cos 4a = \cos 2.2a = {\cos ^2}2a - {\sin ^2}2a = {\left( { - \frac{3}{5}} \right)^2} - \frac{{16}}{{25}} = - \frac{7}{{25}}\)
(Trả lời bởi Hà Quang Minh)
Cho \(\sin a + \cos a = 1\). Tính: \(\sin 2a\)
Thảo luận (1)Hướng dẫn giải\(\sin a + \cos a = 1 \Rightarrow {\left( {\sin a + \cos a} \right)^2} = 1 \)
\(\Leftrightarrow {\sin ^2}a + {\cos ^2} + 2\sin a\cos a = 1 \Leftrightarrow 1 + \sin 2a = 1\)
\(\Leftrightarrow \sin 2a = 0\)
(Trả lời bởi Hà Quang Minh)
Cho \(\cos 2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính \(\sin a,\,\,\cos a,\,\,\tan a\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}\cos 2a = \frac{1}{3} \Leftrightarrow {\cos ^2}a - {\sin ^2}a = \frac{1}{3}\,\,\left( 1 \right)\\{\cos ^2}a + {\sin ^2}a = 1\,\,\,\,\left( 2 \right)\end{array}\)
Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}{\cos ^2}a = \frac{2}{3}\\{\sin ^2}a = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos a = \pm \frac{{\sqrt 6 }}{3}\\\sin a = \pm \frac{{\sqrt 3 }}{3}\end{array} \right.\)
Do \(\frac{\pi }{2} < a < \pi \)\( \Rightarrow \left\{ \begin{array}{l}\cos a = \frac{{-\sqrt 6 }}{3}\\\sin a = \ \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\(\Rightarrow \tan a = \frac{{\sin a}}{{\cos a}} = - \frac{{\sqrt 2 }}{2}\)
(Trả lời bởi Hà Quang Minh)
Cho \(\cos 2x = \frac{1}{4}\).
Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)
\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) = - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B = - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) = - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = - \frac{3}{8}\end{array}\)
(Trả lời bởi Hà Quang Minh)