Bài 1. Giá trị lượng giác của góc lượng giác

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống trang 6-8)

Hướng dẫn giải

a) Khi kim phút quay theo ngược chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:

 \(\frac{2}{{12}} = \frac{1}{6}\) phần của vòng tròn

b) Khi kim phút quay theo đúng chiều kim đồng hồ để nó chỉ đúng số 12, kim phút quay:

\(\frac{{10}}{{12}} = \frac{5}{6}\) phần của vòng tròn

c) Có 2 cách quay kim phút theo một chiều xác định để kim phút từ vị trí chỉ đúng số 2 về vị trí chỉ đúng số 12, đó là: ngược chiều kim đồng hồ và cùng chiều kim đồng hồ

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống trang 6-8)

Hướng dẫn giải

a) Ta có:

- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) = {45^ \circ } + k{.360^ \circ }\)

b) Ta có:

- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) =  - {315^ \circ } + k{.360^ \circ }\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống trang 6-8)

Hướng dẫn giải

a) Ta có:

- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là

sđ\((Ou,Ov) =  {30^ \circ } + n{.360^ \circ }\)

- Các góc lượng giác tia đầu Ov, tia cuối Ow có số đo là

sđ \((Ov,Ow) =  {45^ \circ } + m{.360^ \circ }\)

- Các góc lượng giác tia đầu Ou, tia cuối Ow có số đo là

sđ \((Ou,Ow) =  {75^ \circ } + k{.360^ \circ }\)

b) Với các góc lượng giác ở câu a, ta có:

\(sđ(Ou,Ov) +sđ (Ov,Ow)\)

\(  =  {30^ \circ } + n{.360^ \circ } + {45^ \circ } + m{.360^ \circ } \)

\(= {75^ \circ } + (n+m){.360^ \circ } \)

\(= {75^ \circ } + k{.360^ \circ = sđ (Ou,Ow)} \)

với  k = n + m

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống trang 6-8)

Hướng dẫn giải

Số đo của các góc lượng giác tia đầu $O u$, tia cuối $O v$ là
\(sđ(O u, O v) = sđ(O x, O v)  -  sđ(O x, O u)+ k{360}^{\circ}(k \in \mathbb{Z}) \)

\(=-270^{\circ}-240^{\circ}+k 360^{\circ}=-510^{\circ}+k 360^{\circ} \)
\( =-150^{\circ}+(k-1) 360^{\circ}=-150^{\circ}+n 360^{\circ} \quad(n=k-1, n \in \mathbb{Z})
\)
Vậy các góc lượng giác $(O u, O v)$ có số đo là $-150^{\circ}+n 360^{\circ} \quad(n \in \mathbb{Z})$.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống trang 6-8)

Hướng dẫn giải

a) Ta có:

\(\begin{array}{l}{360^ \circ } = 360.\frac{\pi }{{180}} = 2\pi \\ - {450^ \circ } = 450.\frac{\pi }{{180}} = \frac{5}{2}\pi \end{array}\)

b)\(3\pi  = 3\pi .{\left( {\frac{{180}}{\pi }} \right)^ \circ } = {540^ \circ }\)

\( - \frac{{11\pi }}{5} = \left( { - \frac{{11\pi }}{5}} \right).{\left( {\frac{{180}}{\pi }} \right)^ \circ } =  - {396^ \circ }\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống trang 8-10)

Hướng dẫn giải

a) Độ dài của cung tròn có số đo bằng 1 rad là bằng bán kính R.

b) Độ dài l của cung tròn có số đo \(\alpha \) rad: \(l = R\alpha \).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Kết nối tri thức với cuộc sống trang 8-10)

Hướng dẫn giải

Bán kính quỹ đạo của trạm vũ trụ quốc tế là R = 6 400 + 400 = 6 800 (km).

Đổi \(45{}^\circ =45\cdot \frac{\pi }{180}=\frac{\pi }{4}\).

Vậy trong khi được trạm mặt đất theo dõi, trạm ISS đã di chuyển một quãng đường có độ dài là \(l = R\alpha \text{ = }6\,800\cdot \frac{\pi }{4}\approx 5\,340,708\approx 5\,341\,(km)\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống trang 10-13)

Hướng dẫn giải

Tham khảo:

 

a) Điểm M trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng \(\frac{{5\pi }}{4}\) được xác định trong hình. 

b) Điểm N trên đường tròn lượng giác biểu diễn góc lượng giác có số đo bằng\( - \frac{{7\pi }}{4}\)được xác định là điểm chính giữa cung BA. 

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Luyện tập 4 (SGK Kết nối tri thức với cuộc sống trang 10-13)

Hướng dẫn giải

Tham khảo:

Điểm biểu diễn góc lượng giác có số đo bằng \( - \frac{{15\pi }}{4} =  - \frac{{7\pi }}{4} + ( - 1).2\pi \) được xác định là điểm M.

Ta có \(\frac{{420}}{{360}} = 1+ \frac{1}{6}\) Ta chia đường tròn thành 6 phần bằng nhau. Khi đó điểm N là điểm biểu diễn bởi góc có số đo \({420^ \circ }\)

 

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Hoạt động 5 (SGK Kết nối tri thức với cuộc sống trang 10-13)

Hướng dẫn giải

+) Nửa đường tròn đơn vị: nửa đường tròn tâm O, bán kính R = 1 nằm phía trên trục hoành (H.3.2).

+) Với mỗi góc \(\alpha ({0^o} \le \alpha  \le {180^o})\)có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị nói trên để \(\widehat {xOM} = \alpha .\) Khi đó:

\(\sin \alpha  = {y_0}\) là tung độ của M

\(\cos \alpha  = {x_0}\) là hoành độ của M

\(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha  \ne {90^o})\)

\(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha  \ne {0^o},\alpha  \ne {180^o})\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)