Bài 2: Cực trị hàm số

Minh Đăng

y=\(\dfrac{\sqrt[3]{x^2}}{2x+1}\)

tìm cực trị hàm số

Akai Haruma
Akai Haruma Giáo viên 13 tháng 6 2018 lúc 19:50

Lời giải:

ĐK: \(x\in\mathbb{R}|x\neq \frac{-1}{2}\)

Ta có: \(y=\frac{\sqrt[3]{x^2}}{2x+1}\Rightarrow y'=\frac{2(1-x)}{3\sqrt[3]{x}(2x+1)^2}, \forall x\neq 0; x\neq \frac{-1}{2}\)

\(y'=0\Leftrightarrow x=1\)

Lập bảng biến thiên với điểm \(x=0; x=1\) ta có

\(y_{\text{cực đại}}=y(1)=\frac{1}{3}\)

\(y_{\text{cực tiểu}}=y(0)=0\)

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN