cho x,y,z là các số thực khác 0 thỏa mãn
\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\\x+y+z=1\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
tính P=\(x^{2023}+y^{2023}+z^{2023}\)
Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$
Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$
Thật vậy, ta có :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)
$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$
Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$
Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.
Cho x,y,z đoio một khác nhau thỏa mãn x+y+z=0
Tính \(P=\dfrac{2022\left(x-y\right)\left(y-z\right)\left(z-x\right)}{2xy^2+2yz^2+2zx^2+3xyz}\)
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
cho x, y, z > 0 thỏa mãn xyz =1.
CMR: \(P = \dfrac{x^4y}{x^2+1}+\dfrac{y^4z}{y^2+1}+\dfrac{z^4x}{z^2+1} ≥ \dfrac{3}{2} \)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho ba số thực x,y,z thỏa mãn \(x+y+z \leq 3 \)
CMR: \(\sqrt{\dfrac{z(x^2+y^2)}{x+y}} + \sqrt{\dfrac{x(z^2+y^2)}{z+y}} + \sqrt{\dfrac{y(x^2+z^2)}{x+z}} + 3\sqrt{xyz} \leq \sqrt{2} (\sqrt{z(x+y)} + \sqrt{x(y+z)} + \sqrt{y(x+z)} ) \)
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)