\(\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right)\cdot\dfrac{x^2y-xy^2}{x^2-2xy+y^2}\)
\(=\left(\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{x\left(y-x\right)}\right)\cdot\dfrac{xy\left(x-y\right)}{\left(x-y\right)^2}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x-y}=1\)