Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau
Bạn nào làm hộ mình với mai mình phải nộp r
Cho tam giác abc vuông tại a, AB<AC. Trên bc lấy D,E sao cho BD=BA, CE=CA . Gọi AE cắt đường thẳng qua B vuông góc với BC tại K. Gọi AD cắt đường thẳng qua C vuông góc với BC tại L. BL cắt CK tại I .CM: AI chia đôi DE
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.
cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
cho tam giác ABC vuông tại A. P là điểm di chuyển trên cạnh AB, từ P kẻ đường thẳng song song với AC cắt BC tại M. gọi Q là hình chiếu của M trên AC
Gọi O là trung điểm BQ.cmr khi P di chuyển trên cạnh AB thì O di chuyển trên đoạn thẳng cố định
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)