Mệnh đề này là mệnh đề đúng
Ví dụ với \(x=\dfrac{1}{2}\) thì \(x^2=\dfrac{1}{4}\Rightarrow\dfrac{1}{2}>\dfrac{1}{4}\) đúng
Mệnh đề này đúng
Vd: \(x=\dfrac{1}{4}\) thì \(x=\dfrac{1}{4}>x^2=\dfrac{1}{16}\)
Mệnh đề này là mệnh đề đúng
Ví dụ với \(x=\dfrac{1}{2}\) thì \(x^2=\dfrac{1}{4}\Rightarrow\dfrac{1}{2}>\dfrac{1}{4}\) đúng
Mệnh đề này đúng
Vd: \(x=\dfrac{1}{4}\) thì \(x=\dfrac{1}{4}>x^2=\dfrac{1}{16}\)
Cho mênh đề “ ∀ x ∈ ℝ , x 2 + x ≥ − 1 4 ”. Lập mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó
A. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề đúng
B. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≤ − 1 4 " Đây là mệnh đề đúng
C. A ¯ : " ∃ x ∈ ℝ , x 2 + x < − 1 4 " Đây là mệnh đề đúng
D. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề sai
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó. ∀ x ∈ R : x2 > 0
Phát biểu thành lời các mệnh đề sau và xét tính đúng sai của chúng. ∃ x ∈ R : x 2 + x + 1 > 0
Xét tính đúng sai của mỗi mệnh đề sau và phát biểu phủ định của nó x =2 là một nghiệm của phương trình x 2 - 4 x - 2 = 0
Xét tính đúng sai của mỗi mệnh đề sau và phát biểu phủ định của nó. x =2 là một nghiệm của phương trình x 2 - 4 x - 2 = 0
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ x ∈ R : x < x + 1
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó ∀ x ∈ R: x.1 = x;