Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần hân

Xem hình vuông abcd trên cạnh BC lấy điểm E bất kì e không trùng BC Trên cạnh CD lấy điểm F bất kì f không trùng CD,sao cho góc EAF+45 độ đường chéo BD của hình vuông ABCD cắt AE,AF lần lượt tại M và N

a) c/m tứ giác abfm nội tiếp

b) c/m khi e và f di động,đường thẳng EF lluôn tiếp xúc với một đường tròn cố định

Đỗ Đức Duy
29 tháng 6 2023 lúc 15:59

a) Để chứng minh tứ giác ABFM là tứ giác nội tiếp, ta cần chứng minh góc AMB + góc AFB = 180 độ.

Góc AMB là góc giữa đường chéo BD và cạnh AB của hình vuông ABCD. Vì đường chéo BD cắt AE tại M, nên góc AMB chính là góc EAM.

Góc AFB là góc giữa đường thẳng EF và cạnh AB của hình vuông ABCD. Vì đường thẳng EF song song với cạnh AB, nên góc AFB bằng góc EAF.

Theo đề bài, góc EAF + 45 độ = 180 độ. Do đó, góc EAF = 180 - 45 = 135 độ.

Vậy, ta có góc AMB + góc AFB = góc EAM + góc EAF = 135 độ + 135 độ = 270 độ = 180 độ.

Vì tổng hai góc AMB và AFB bằng 180 độ, nên tứ giác ABFM là tứ giác nội tiếp.

b) Khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, ta cần chứng minh rằng đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

Gọi O là giao điểm của đường chéo BD và đường thẳng EF. Ta cần chứng minh rằng O nằm trên một đường tròn cố định khi E và F di động.

Vì góc EAF + 45 độ = 180 độ, nên góc EAF = 135 độ. Điều này có nghĩa là tam giác EAF là tam giác cân tại A.

Do đó, đường trung tuyến MN của tam giác EAF là đường cao và đường trung trực của cạnh EF. Vì M và N lần lượt là giao điểm của đường trung tuyến MN với AE và AF, nên M và N là trung điểm của AE và AF.

Vì M và N là trung điểm của hai cạnh của hình vuông ABCD, nên OM và ON là đường trung trực của AB và AD. Do đó, O nằm trên đường trung trực của cạnh AB và AD.

Vì AB và AD là hai cạnh cố định của hình vuông ABCD, nên đường trung trực của AB và AD là đường thẳng cố định. Vậy, O nằm trên một đường tròn cố định.

Vì vậy, khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

 


Các câu hỏi tương tự
Thành đz
Xem chi tiết
Toman_Symbol
Xem chi tiết
Thanh Yến
Xem chi tiết
Lục Ninh
Xem chi tiết
Nguyễn đăng Khoa
Xem chi tiết
Đặng Bảo Quỳnh Anh 8a
Xem chi tiết
Thien Nguyen
Xem chi tiết
Aurora
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết