Xác định đa thức bậc 3 sao cho khi chia đa thức ấy lần lượt cho các nhị thức: x - 1; x - 2; x - 3 đều có số dư là 6 và tại x = -1 thì đa thức nhận giá trị tương ứng là -18.
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Tìm đa thức bậc 3, P(x) biết rằng khi chia P(x) cho x-1, x-2, x-3 đều dư 6 và P(-1)= -18
Giải đi rồi tick cho
Đa thức x^4+3x^3-17x^2+ax+b chia hết cho đa thức x^2+5x-3 thì giá trị của biểu thức là
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Cho đa thức f(x)=x^3-3x^2+2. Tìm đa thức thương và đa thức dư trong phép chia đa thức f(x) cho 2x+1